helicone.mdx 1.7 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152
  1. ---
  2. title: "🧊 Helicone"
  3. description: "Implement Helicone, the open-source LLM observability platform, with Embedchain. Monitor, debug, and optimize your AI applications effortlessly."
  4. "twitter:title": "Helicone LLM Observability for Embedchain"
  5. ---
  6. Get started with [Helicone](https://www.helicone.ai/), the open-source LLM observability platform for developers to monitor, debug, and optimize their applications.
  7. To use Helicone, you need to do the following steps.
  8. ## Integration Steps
  9. <Steps>
  10. <Step title="Create an account + Generate an API Key">
  11. Log into [Helicone](https://www.helicone.ai) or create an account. Once you have an account, you
  12. can generate an [API key](https://helicone.ai/developer).
  13. <Note>
  14. Make sure to generate a [write only API key](helicone-headers/helicone-auth).
  15. </Note>
  16. </Step>
  17. <Step title="Set base_url in the your code">
  18. You can configure your base_url and OpenAI API key in your codebase
  19. <CodeGroup>
  20. ```python main.py
  21. import os
  22. from embedchain import App
  23. # Modify the base path and add a Helicone URL
  24. os.environ["OPENAI_API_BASE"] = "https://oai.helicone.ai/{YOUR_HELICONE_API_KEY}/v1"
  25. # Add your OpenAI API Key
  26. os.environ["OPENAI_API_KEY"] = "{YOUR_OPENAI_API_KEY}"
  27. app = App()
  28. # Add data to your app
  29. app.add("https://en.wikipedia.org/wiki/Elon_Musk")
  30. # Query your app
  31. print(app.query("How many companies did Elon found? Which companies?"))
  32. ```
  33. </CodeGroup>
  34. </Step>
  35. <Step title="Now you can see all passing requests through Embedchain in Helicone">
  36. <img src="/images/helicone-embedchain.png" alt="Embedchain requests" />
  37. </Step>
  38. </Steps>
  39. Check out [Helicone](https://www.helicone.ai) to see more use cases!