pinecone.py 1.7 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243
  1. import os
  2. from typing import Optional
  3. from embedchain.config.vectordb.base import BaseVectorDbConfig
  4. from embedchain.helpers.json_serializable import register_deserializable
  5. @register_deserializable
  6. class PineconeDBConfig(BaseVectorDbConfig):
  7. def __init__(
  8. self,
  9. index_name: Optional[str] = None,
  10. api_key: Optional[str] = None,
  11. vector_dimension: int = 1536,
  12. metric: Optional[str] = "cosine",
  13. pod_config: Optional[dict[str, any]] = None,
  14. serverless_config: Optional[dict[str, any]] = None,
  15. hybrid_search: bool = False,
  16. **extra_params: dict[str, any],
  17. ):
  18. self.metric = metric
  19. self.api_key = api_key
  20. self.index_name = index_name
  21. self.vector_dimension = vector_dimension
  22. self.extra_params = extra_params
  23. self.hybrid_search = hybrid_search
  24. if pod_config is None and serverless_config is None:
  25. # If no config is provided, use the default pod spec config
  26. pod_environment = os.environ.get("PINECONE_ENV", "gcp-starter")
  27. self.pod_config = {"environment": pod_environment, "metadata_config": {"indexed": ["*"]}}
  28. else:
  29. self.pod_config = pod_config
  30. self.serverless_config = serverless_config
  31. if self.pod_config and self.serverless_config:
  32. raise ValueError("Only one of pod_config or serverless_config can be provided.")
  33. if self.hybrid_search and self.metric != "dotproduct":
  34. raise ValueError(
  35. "Hybrid search is only supported with dotproduct metric in Pinecone. See full docs here: https://docs.pinecone.io/docs/hybrid-search#limitations"
  36. ) # noqa:E501
  37. super().__init__(collection_name=self.index_name, dir=None)