123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266 |
- import logging
- from typing import Any, Optional, Union
- try:
- from elasticsearch import Elasticsearch
- from elasticsearch.helpers import bulk
- except ImportError:
- raise ImportError(
- "Elasticsearch requires extra dependencies. Install with `pip install --upgrade embedchain[elasticsearch]`"
- ) from None
- from embedchain.config import ElasticsearchDBConfig
- from embedchain.helpers.json_serializable import register_deserializable
- from embedchain.utils.misc import chunks
- from embedchain.vectordb.base import BaseVectorDB
- @register_deserializable
- class ElasticsearchDB(BaseVectorDB):
- """
- Elasticsearch as vector database
- """
- BATCH_SIZE = 100
- def __init__(
- self,
- config: Optional[ElasticsearchDBConfig] = None,
- es_config: Optional[ElasticsearchDBConfig] = None, # Backwards compatibility
- ):
- """Elasticsearch as vector database.
- :param config: Elasticsearch database config, defaults to None
- :type config: ElasticsearchDBConfig, optional
- :param es_config: `es_config` is supported as an alias for `config` (for backwards compatibility),
- defaults to None
- :type es_config: ElasticsearchDBConfig, optional
- :raises ValueError: No config provided
- """
- if config is None and es_config is None:
- self.config = ElasticsearchDBConfig()
- else:
- if not isinstance(config, ElasticsearchDBConfig):
- raise TypeError(
- "config is not a `ElasticsearchDBConfig` instance. "
- "Please make sure the type is right and that you are passing an instance."
- )
- self.config = config or es_config
- if self.config.ES_URL:
- self.client = Elasticsearch(self.config.ES_URL, **self.config.ES_EXTRA_PARAMS)
- elif self.config.CLOUD_ID:
- self.client = Elasticsearch(cloud_id=self.config.CLOUD_ID, **self.config.ES_EXTRA_PARAMS)
- else:
- raise ValueError(
- "Something is wrong with your config. Please check again - `https://docs.embedchain.ai/components/vector-databases#elasticsearch`" # noqa: E501
- )
- # Call parent init here because embedder is needed
- super().__init__(config=self.config)
- def _initialize(self):
- """
- This method is needed because `embedder` attribute needs to be set externally before it can be initialized.
- """
- logging.info(self.client.info())
- index_settings = {
- "mappings": {
- "properties": {
- "text": {"type": "text"},
- "embeddings": {"type": "dense_vector", "index": False, "dims": self.embedder.vector_dimension},
- }
- }
- }
- es_index = self._get_index()
- if not self.client.indices.exists(index=es_index):
- # create index if not exist
- print("Creating index", es_index, index_settings)
- self.client.indices.create(index=es_index, body=index_settings)
- def _get_or_create_db(self):
- """Called during initialization"""
- return self.client
- def _get_or_create_collection(self, name):
- """Note: nothing to return here. Discuss later"""
- def get(self, ids: Optional[list[str]] = None, where: Optional[dict[str, any]] = None, limit: Optional[int] = None):
- """
- Get existing doc ids present in vector database
- :param ids: _list of doc ids to check for existence
- :type ids: list[str]
- :param where: to filter data
- :type where: dict[str, any]
- :return: ids
- :rtype: Set[str]
- """
- if ids:
- query = {"bool": {"must": [{"ids": {"values": ids}}]}}
- else:
- query = {"bool": {"must": []}}
- if where:
- for key, value in where.items():
- query["bool"]["must"].append({"term": {f"metadata.{key}.keyword": value}})
- response = self.client.search(index=self._get_index(), query=query, _source=True, size=limit)
- docs = response["hits"]["hits"]
- ids = [doc["_id"] for doc in docs]
- doc_ids = [doc["_source"]["metadata"]["doc_id"] for doc in docs]
- # Result is modified for compatibility with other vector databases
- # TODO: Add method in vector database to return result in a standard format
- result = {"ids": ids, "metadatas": []}
- for doc_id in doc_ids:
- result["metadatas"].append({"doc_id": doc_id})
- return result
- def add(
- self,
- documents: list[str],
- metadatas: list[object],
- ids: list[str],
- **kwargs: Optional[dict[str, any]],
- ) -> Any:
- """
- add data in vector database
- :param documents: list of texts to add
- :type documents: list[str]
- :param metadatas: list of metadata associated with docs
- :type metadatas: list[object]
- :param ids: ids of docs
- :type ids: list[str]
- """
- embeddings = self.embedder.embedding_fn(documents)
- for chunk in chunks(
- list(zip(ids, documents, metadatas, embeddings)), self.BATCH_SIZE, desc="Inserting batches in elasticsearch"
- ): # noqa: E501
- ids, docs, metadatas, embeddings = [], [], [], []
- for id, text, metadata, embedding in chunk:
- ids.append(id)
- docs.append(text)
- metadatas.append(metadata)
- embeddings.append(embedding)
- batch_docs = []
- for id, text, metadata, embedding in zip(ids, docs, metadatas, embeddings):
- batch_docs.append(
- {
- "_index": self._get_index(),
- "_id": id,
- "_source": {"text": text, "metadata": metadata, "embeddings": embedding},
- }
- )
- bulk(self.client, batch_docs, **kwargs)
- self.client.indices.refresh(index=self._get_index())
- def query(
- self,
- input_query: list[str],
- n_results: int,
- where: dict[str, any],
- citations: bool = False,
- **kwargs: Optional[dict[str, Any]],
- ) -> Union[list[tuple[str, dict]], list[str]]:
- """
- query contents from vector database based on vector similarity
- :param input_query: list of query string
- :type input_query: list[str]
- :param n_results: no of similar documents to fetch from database
- :type n_results: int
- :param where: Optional. to filter data
- :type where: dict[str, any]
- :return: The context of the document that matched your query, url of the source, doc_id
- :param citations: we use citations boolean param to return context along with the answer.
- :type citations: bool, default is False.
- :return: The content of the document that matched your query,
- along with url of the source and doc_id (if citations flag is true)
- :rtype: list[str], if citations=False, otherwise list[tuple[str, str, str]]
- """
- input_query_vector = self.embedder.embedding_fn(input_query)
- query_vector = input_query_vector[0]
- # `https://www.elastic.co/guide/en/elasticsearch/reference/7.17/query-dsl-script-score-query.html`
- query = {
- "script_score": {
- "query": {"bool": {"must": [{"exists": {"field": "text"}}]}},
- "script": {
- "source": "cosineSimilarity(params.input_query_vector, 'embeddings') + 1.0",
- "params": {"input_query_vector": query_vector},
- },
- }
- }
- if where:
- for key, value in where.items():
- query["script_score"]["query"]["bool"]["must"].append({"term": {f"metadata.{key}.keyword": value}})
- _source = ["text", "metadata"]
- response = self.client.search(index=self._get_index(), query=query, _source=_source, size=n_results)
- docs = response["hits"]["hits"]
- contexts = []
- for doc in docs:
- context = doc["_source"]["text"]
- if citations:
- metadata = doc["_source"]["metadata"]
- metadata["score"] = doc["_score"]
- contexts.append(tuple((context, metadata)))
- else:
- contexts.append(context)
- return contexts
- def set_collection_name(self, name: str):
- """
- Set the name of the collection. A collection is an isolated space for vectors.
- :param name: Name of the collection.
- :type name: str
- """
- if not isinstance(name, str):
- raise TypeError("Collection name must be a string")
- self.config.collection_name = name
- def count(self) -> int:
- """
- Count number of documents/chunks embedded in the database.
- :return: number of documents
- :rtype: int
- """
- query = {"match_all": {}}
- response = self.client.count(index=self._get_index(), query=query)
- doc_count = response["count"]
- return doc_count
- def reset(self):
- """
- Resets the database. Deletes all embeddings irreversibly.
- """
- # Delete all data from the database
- if self.client.indices.exists(index=self._get_index()):
- # delete index in Es
- self.client.indices.delete(index=self._get_index())
- def _get_index(self) -> str:
- """Get the Elasticsearch index for a collection
- :return: Elasticsearch index
- :rtype: str
- """
- # NOTE: The method is preferred to an attribute, because if collection name changes,
- # it's always up-to-date.
- return f"{self.config.collection_name}_{self.embedder.vector_dimension}".lower()
- def delete(self, where):
- """Delete documents from the database."""
- query = {"query": {"bool": {"must": []}}}
- for key, value in where.items():
- query["query"]["bool"]["must"].append({"term": {f"metadata.{key}.keyword": value}})
- self.client.delete_by_query(index=self._get_index(), body=query)
- self.client.indices.refresh(index=self._get_index())
|