Без опису

cachho 4021d93168 chore: linting (#449) 2 роки тому
.github 91033c7221 chore: update pr template (#323) 2 роки тому
docs e3ae84b80d add: WhatsApp, Slack and Telegram bots (#438) 2 роки тому
embedchain 4021d93168 chore: linting (#449) 2 роки тому
examples e3ae84b80d add: WhatsApp, Slack and Telegram bots (#438) 2 роки тому
notebooks 96143ac496 docs: app config instead of init config (#308) 2 роки тому
tests 28e06be26f fix: reset destroys app (#319) 2 роки тому
.env.example ac68986404 Add project tools and contributing guidelines (#281) 2 роки тому
.gitignore c595003481 docs: setup docs for embedchain (#287) 2 роки тому
.pre-commit-config.yaml ac68986404 Add project tools and contributing guidelines (#281) 2 роки тому
CITATION.cff 736b645fea Add citation (#137) 2 роки тому
CONTRIBUTING.md c595003481 docs: setup docs for embedchain (#287) 2 роки тому
LICENSE 65d1ff37e8 Create LICENSE 2 роки тому
Makefile 05a4eef6ae chores: run lint and format (#284) 2 роки тому
README.md 12a2f78dcb add "d" on "Embedchain" in citation section title (#369) 2 роки тому
poetry.toml ac68986404 Add project tools and contributing guidelines (#281) 2 роки тому
pyproject.toml 09c02954ba Bump version to 0.0.38 (#442) 2 роки тому
setup.py 09c02954ba Bump version to 0.0.38 (#442) 2 роки тому

README.md

embedchain

PyPI Discord Twitter Substack Open in Colab

Embedchain is a framework to easily create LLM powered bots over any dataset. If you want a javascript version, check out embedchain-js

🔧 Quick install

pip install embedchain

🔥 Latest

  • [2023/07/19] Released support for 🦙 llama2 model. Start creating your llama2 based bots like this:
  import os

  from embedchain import Llama2App

  os.environ['REPLICATE_API_TOKEN'] = "REPLICATE API TOKEN"

  zuck_bot = Llama2App()

  # Embed your data
  zuck_bot.add("youtube_video", "https://www.youtube.com/watch?v=Ff4fRgnuFgQ")
  zuck_bot.add("web_page", "https://en.wikipedia.org/wiki/Mark_Zuckerberg")

  # Nice, your bot is ready now. Start asking questions to your bot.
  zuck_bot.query("Who is Mark Zuckerberg?")
  # Answer: Mark Zuckerberg is an American internet entrepreneur and business magnate. He is the co-founder and CEO of Facebook.

🔍 Demo

Try out embedchain in your browser:

Open in Colab

📖 Documentation

The documentation for embedchain can be found at docs.embedchain.ai.

💻 Usage

Embedchain empowers you to create chatbot models similar to ChatGPT, using your own evolving dataset.

Queries

For example, you can use Embedchain to create an Elon Musk bot using the following code:

import os
from embedchain import App

# Create a bot instance
os.environ["OPENAI_API_KEY"] = "YOUR API KEY"
elon_bot = App()

# Embed online resources
elon_bot.add("web_page", "https://en.wikipedia.org/wiki/Elon_Musk")
elon_bot.add("web_page", "https://tesla.com/elon-musk")
elon_bot.add("youtube_video", "https://www.youtube.com/watch?v=MxZpaJK74Y4")

# Query the bot
elon_bot.query("How many companies does Elon Musk run?")
# Answer: Elon Musk runs four companies: Tesla, SpaceX, Neuralink, and The Boring Company

🤝 Contributing

Contributions are welcome! Please check out the issues on the repository, and feel free to open a pull request. For more information, please see the contributing guidelines.

Citation

If you utilize this repository, please consider citing it with:

@misc{embedchain,
  author = {Taranjeet Singh},
  title = {Embedchain: Framework to easily create LLM powered bots over any dataset},
  year = {2023},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/embedchain/embedchain}},
}