123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388 |
- ---
- title: 🧩 Embedding models
- ---
- ## Overview
- Embedchain supports several embedding models from the following providers:
- <CardGroup cols={4}>
- <Card title="OpenAI" href="#openai"></Card>
- <Card title="GoogleAI" href="#google-ai"></Card>
- <Card title="Azure OpenAI" href="#azure-openai"></Card>
- <Card title="GPT4All" href="#gpt4all"></Card>
- <Card title="Hugging Face" href="#hugging-face"></Card>
- <Card title="Vertex AI" href="#vertex-ai"></Card>
- <Card title="NVIDIA AI" href="#nvidia-ai"></Card>
- <Card title="Cohere" href="#cohere"></Card>
- <Card title="Ollama" href="#ollama"></Card>
- </CardGroup>
- ## OpenAI
- To use OpenAI embedding function, you have to set the `OPENAI_API_KEY` environment variable. You can obtain the OpenAI API key from the [OpenAI Platform](https://platform.openai.com/account/api-keys).
- Once you have obtained the key, you can use it like this:
- <CodeGroup>
- ```python main.py
- import os
- from embedchain import App
- os.environ['OPENAI_API_KEY'] = 'xxx'
- # load embedding model configuration from config.yaml file
- app = App.from_config(config_path="config.yaml")
- app.add("https://en.wikipedia.org/wiki/OpenAI")
- app.query("What is OpenAI?")
- ```
- ```yaml config.yaml
- embedder:
- provider: openai
- config:
- model: 'text-embedding-3-small'
- ```
- </CodeGroup>
- * OpenAI announced two new embedding models: `text-embedding-3-small` and `text-embedding-3-large`. Embedchain supports both these models. Below you can find YAML config for both:
- <CodeGroup>
- ```yaml text-embedding-3-small.yaml
- embedder:
- provider: openai
- config:
- model: 'text-embedding-3-small'
- ```
- ```yaml text-embedding-3-large.yaml
- embedder:
- provider: openai
- config:
- model: 'text-embedding-3-large'
- ```
- </CodeGroup>
- ## Google AI
- To use Google AI embedding function, you have to set the `GOOGLE_API_KEY` environment variable. You can obtain the Google API key from the [Google Maker Suite](https://makersuite.google.com/app/apikey)
- <CodeGroup>
- ```python main.py
- import os
- from embedchain import App
- os.environ["GOOGLE_API_KEY"] = "xxx"
- app = App.from_config(config_path="config.yaml")
- ```
- ```yaml config.yaml
- embedder:
- provider: google
- config:
- model: 'models/embedding-001'
- task_type: "retrieval_document"
- title: "Embeddings for Embedchain"
- ```
- </CodeGroup>
- <br/>
- <Note>
- For more details regarding the Google AI embedding model, please refer to the [Google AI documentation](https://ai.google.dev/tutorials/python_quickstart#use_embeddings).
- </Note>
- ## Azure OpenAI
- To use Azure OpenAI embedding model, you have to set some of the azure openai related environment variables as given in the code block below:
- <CodeGroup>
- ```python main.py
- import os
- from embedchain import App
- os.environ["OPENAI_API_TYPE"] = "azure"
- os.environ["AZURE_OPENAI_ENDPOINT"] = "https://xxx.openai.azure.com/"
- os.environ["AZURE_OPENAI_API_KEY"] = "xxx"
- os.environ["OPENAI_API_VERSION"] = "xxx"
- app = App.from_config(config_path="config.yaml")
- ```
- ```yaml config.yaml
- llm:
- provider: azure_openai
- config:
- model: gpt-35-turbo
- deployment_name: your_llm_deployment_name
- temperature: 0.5
- max_tokens: 1000
- top_p: 1
- stream: false
- embedder:
- provider: azure_openai
- config:
- model: text-embedding-ada-002
- deployment_name: you_embedding_model_deployment_name
- ```
- </CodeGroup>
- You can find the list of models and deployment name on the [Azure OpenAI Platform](https://oai.azure.com/portal).
- ## GPT4ALL
- GPT4All supports generating high quality embeddings of arbitrary length documents of text using a CPU optimized contrastively trained Sentence Transformer.
- <CodeGroup>
- ```python main.py
- from embedchain import App
- # load embedding model configuration from config.yaml file
- app = App.from_config(config_path="config.yaml")
- ```
- ```yaml config.yaml
- llm:
- provider: gpt4all
- config:
- model: 'orca-mini-3b-gguf2-q4_0.gguf'
- temperature: 0.5
- max_tokens: 1000
- top_p: 1
- stream: false
- embedder:
- provider: gpt4all
- ```
- </CodeGroup>
- ## Hugging Face
- Hugging Face supports generating embeddings of arbitrary length documents of text using Sentence Transformer library. Example of how to generate embeddings using hugging face is given below:
- <CodeGroup>
- ```python main.py
- from embedchain import App
- # load embedding model configuration from config.yaml file
- app = App.from_config(config_path="config.yaml")
- ```
- ```yaml config.yaml
- llm:
- provider: huggingface
- config:
- model: 'google/flan-t5-xxl'
- temperature: 0.5
- max_tokens: 1000
- top_p: 0.5
- stream: false
- embedder:
- provider: huggingface
- config:
- model: 'sentence-transformers/all-mpnet-base-v2'
- ```
- </CodeGroup>
- ## Vertex AI
- Embedchain supports Google's VertexAI embeddings model through a simple interface. You just have to pass the `model_name` in the config yaml and it would work out of the box.
- <CodeGroup>
- ```python main.py
- from embedchain import App
- # load embedding model configuration from config.yaml file
- app = App.from_config(config_path="config.yaml")
- ```
- ```yaml config.yaml
- llm:
- provider: vertexai
- config:
- model: 'chat-bison'
- temperature: 0.5
- top_p: 0.5
- embedder:
- provider: vertexai
- config:
- model: 'textembedding-gecko'
- ```
- </CodeGroup>
- ## NVIDIA AI
- [NVIDIA AI Foundation Endpoints](https://www.nvidia.com/en-us/ai-data-science/foundation-models/) let you quickly use NVIDIA's AI models, such as Mixtral 8x7B, Llama 2 etc, through our API. These models are available in the [NVIDIA NGC catalog](https://catalog.ngc.nvidia.com/ai-foundation-models), fully optimized and ready to use on NVIDIA's AI platform. They are designed for high speed and easy customization, ensuring smooth performance on any accelerated setup.
- ### Usage
- In order to use embedding models and LLMs from NVIDIA AI, create an account on [NVIDIA NGC Service](https://catalog.ngc.nvidia.com/).
- Generate an API key from their dashboard. Set the API key as `NVIDIA_API_KEY` environment variable. Note that the `NVIDIA_API_KEY` will start with `nvapi-`.
- Below is an example of how to use LLM model and embedding model from NVIDIA AI:
- <CodeGroup>
- ```python main.py
- import os
- from embedchain import App
- os.environ['NVIDIA_API_KEY'] = 'nvapi-xxxx'
- config = {
- "app": {
- "config": {
- "id": "my-app",
- },
- },
- "llm": {
- "provider": "nvidia",
- "config": {
- "model": "nemotron_steerlm_8b",
- },
- },
- "embedder": {
- "provider": "nvidia",
- "config": {
- "model": "nvolveqa_40k",
- "vector_dimension": 1024,
- },
- },
- }
- app = App.from_config(config=config)
- app.add("https://www.forbes.com/profile/elon-musk")
- answer = app.query("What is the net worth of Elon Musk today?")
- # Answer: The net worth of Elon Musk is subject to fluctuations based on the market value of his holdings in various companies.
- # As of March 1, 2024, his net worth is estimated to be approximately $210 billion. However, this figure can change rapidly due to stock market fluctuations and other factors.
- # Additionally, his net worth may include other assets such as real estate and art, which are not reflected in his stock portfolio.
- ```
- </CodeGroup>
- ## Cohere
- To use embedding models and LLMs from COHERE, create an account on [COHERE](https://dashboard.cohere.com/welcome/login?redirect_uri=%2Fapi-keys).
- Generate an API key from their dashboard. Set the API key as `COHERE_API_KEY` environment variable.
- Once you have obtained the key, you can use it like this:
- <CodeGroup>
- ```python main.py
- import os
- from embedchain import App
- os.environ['COHERE_API_KEY'] = 'xxx'
- # load embedding model configuration from config.yaml file
- app = App.from_config(config_path="config.yaml")
- ```
- ```yaml config.yaml
- embedder:
- provider: cohere
- config:
- model: 'embed-english-light-v3.0'
- ```
- </CodeGroup>
- * Cohere has few embedding models: `embed-english-v3.0`, `embed-multilingual-v3.0`, `embed-multilingual-light-v3.0`, `embed-english-v2.0`, `embed-english-light-v2.0` and `embed-multilingual-v2.0`. Embedchain supports all these models. Below you can find YAML config for all:
- <CodeGroup>
- ```yaml embed-english-v3.0.yaml
- embedder:
- provider: cohere
- config:
- model: 'embed-english-v3.0'
- vector_dimension: 1024
- ```
- ```yaml embed-multilingual-v3.0.yaml
- embedder:
- provider: cohere
- config:
- model: 'embed-multilingual-v3.0'
- vector_dimension: 1024
- ```
- ```yaml embed-multilingual-light-v3.0.yaml
- embedder:
- provider: cohere
- config:
- model: 'embed-multilingual-light-v3.0'
- vector_dimension: 384
- ```
- ```yaml embed-english-v2.0.yaml
- embedder:
- provider: cohere
- config:
- model: 'embed-english-v2.0'
- vector_dimension: 4096
- ```
- ```yaml embed-english-light-v2.0.yaml
- embedder:
- provider: cohere
- config:
- model: 'embed-english-light-v2.0'
- vector_dimension: 1024
- ```
- ```yaml embed-multilingual-v2.0.yaml
- embedder:
- provider: cohere
- config:
- model: 'embed-multilingual-v2.0'
- vector_dimension: 768
- ```
- </CodeGroup>
- ## Ollama
- Ollama enables the use of embedding models, allowing you to generate high-quality embeddings directly on your local machine. Make sure to install [Ollama](https://ollama.com/download) and keep it running before using the embedding model.
- You can find the list of models at [Ollama Embedding Models](https://ollama.com/blog/embedding-models).
- Below is an example of how to use embedding model Ollama:
- <CodeGroup>
- ```python main.py
- import os
- from embedchain import App
- # load embedding model configuration from config.yaml file
- app = App.from_config(config_path="config.yaml")
- ```
- ```yaml config.yaml
- embedder:
- provider: ollama
- config:
- model: 'all-minilm:latest'
- ```
- </CodeGroup>
|