1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859 |
- import streamlit as st
- from embedchain import App
- @st.cache_resource
- def embedchain_bot():
- return App()
- st.title("💬 Chatbot")
- st.caption("🚀 An Embedchain app powered by OpenAI!")
- if "messages" not in st.session_state:
- st.session_state.messages = [
- {
- "role": "assistant",
- "content": """
- Hi! I'm a chatbot. I can answer questions and learn new things!\n
- Ask me anything and if you want me to learn something do `/add <source>`.\n
- I can learn mostly everything. :)
- """,
- }
- ]
- for message in st.session_state.messages:
- with st.chat_message(message["role"]):
- st.markdown(message["content"])
- if prompt := st.chat_input("Ask me anything!"):
- app = embedchain_bot()
- if prompt.startswith("/add"):
- with st.chat_message("user"):
- st.markdown(prompt)
- st.session_state.messages.append({"role": "user", "content": prompt})
- prompt = prompt.replace("/add", "").strip()
- with st.chat_message("assistant"):
- message_placeholder = st.empty()
- message_placeholder.markdown("Adding to knowledge base...")
- app.add(prompt)
- message_placeholder.markdown(f"Added {prompt} to knowledge base!")
- st.session_state.messages.append({"role": "assistant", "content": f"Added {prompt} to knowledge base!"})
- st.stop()
- with st.chat_message("user"):
- st.markdown(prompt)
- st.session_state.messages.append({"role": "user", "content": prompt})
- with st.chat_message("assistant"):
- msg_placeholder = st.empty()
- msg_placeholder.markdown("Thinking...")
- full_response = ""
- for response in app.chat(prompt):
- msg_placeholder.empty()
- full_response += response
- msg_placeholder.markdown(full_response)
- st.session_state.messages.append({"role": "assistant", "content": full_response})
|