1234567891011121314151617181920212223242526272829303132333435363738 |
- import logging
- from typing import Optional
- from embedchain.config import BaseLlmConfig
- from embedchain.helpers.json_serializable import register_deserializable
- from embedchain.llm.base import BaseLlm
- @register_deserializable
- class AzureOpenAILlm(BaseLlm):
- def __init__(self, config: Optional[BaseLlmConfig] = None):
- super().__init__(config=config)
- def get_llm_model_answer(self, prompt):
- return AzureOpenAILlm._get_answer(prompt=prompt, config=self.config)
- @staticmethod
- def _get_answer(prompt: str, config: BaseLlmConfig) -> str:
- from langchain_community.chat_models import AzureChatOpenAI
- if not config.deployment_name:
- raise ValueError("Deployment name must be provided for Azure OpenAI")
- chat = AzureChatOpenAI(
- deployment_name=config.deployment_name,
- openai_api_version="2023-05-15",
- model_name=config.model or "gpt-3.5-turbo",
- temperature=config.temperature,
- max_tokens=config.max_tokens,
- streaming=config.stream,
- )
- if config.top_p and config.top_p != 1:
- logging.warning("Config option `top_p` is not supported by this model.")
- messages = BaseLlm._get_messages(prompt, system_prompt=config.system_prompt)
- return chat(messages).content
|