vllm.py 1.4 KB

12345678910111213141516171819202122232425262728293031323334353637383940
  1. from typing import Iterable, Optional, Union
  2. from langchain.callbacks.manager import CallbackManager
  3. from langchain.callbacks.stdout import StdOutCallbackHandler
  4. from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
  5. from langchain_community.llms import VLLM as BaseVLLM
  6. from embedchain.config import BaseLlmConfig
  7. from embedchain.helpers.json_serializable import register_deserializable
  8. from embedchain.llm.base import BaseLlm
  9. @register_deserializable
  10. class VLLM(BaseLlm):
  11. def __init__(self, config: Optional[BaseLlmConfig] = None):
  12. super().__init__(config=config)
  13. if self.config.model is None:
  14. self.config.model = "mosaicml/mpt-7b"
  15. def get_llm_model_answer(self, prompt):
  16. return self._get_answer(prompt=prompt, config=self.config)
  17. @staticmethod
  18. def _get_answer(prompt: str, config: BaseLlmConfig) -> Union[str, Iterable]:
  19. callback_manager = [StreamingStdOutCallbackHandler()] if config.stream else [StdOutCallbackHandler()]
  20. # Prepare the arguments for BaseVLLM
  21. llm_args = {
  22. "model": config.model,
  23. "temperature": config.temperature,
  24. "top_p": config.top_p,
  25. "callback_manager": CallbackManager(callback_manager),
  26. }
  27. # Add model_kwargs if they are not None
  28. if config.model_kwargs is not None:
  29. llm_args.update(config.model_kwargs)
  30. llm = BaseVLLM(**llm_args)
  31. return llm(prompt)