123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252 |
- import logging
- import time
- from typing import Any, Optional, Union
- from tqdm import tqdm
- try:
- from opensearchpy import OpenSearch
- from opensearchpy.helpers import bulk
- except ImportError:
- raise ImportError(
- "OpenSearch requires extra dependencies. Install with `pip install --upgrade embedchain[opensearch]`"
- ) from None
- from langchain_community.embeddings.openai import OpenAIEmbeddings
- from langchain_community.vectorstores import OpenSearchVectorSearch
- from embedchain.config import OpenSearchDBConfig
- from embedchain.helpers.json_serializable import register_deserializable
- from embedchain.vectordb.base import BaseVectorDB
- @register_deserializable
- class OpenSearchDB(BaseVectorDB):
- """
- OpenSearch as vector database
- """
- BATCH_SIZE = 100
- def __init__(self, config: OpenSearchDBConfig):
- """OpenSearch as vector database.
- :param config: OpenSearch domain config
- :type config: OpenSearchDBConfig
- """
- if config is None:
- raise ValueError("OpenSearchDBConfig is required")
- self.config = config
- self.client = OpenSearch(
- hosts=[self.config.opensearch_url],
- http_auth=self.config.http_auth,
- **self.config.extra_params,
- )
- info = self.client.info()
- logging.info(f"Connected to {info['version']['distribution']}. Version: {info['version']['number']}")
- # Remove auth credentials from config after successful connection
- super().__init__(config=self.config)
- def _initialize(self):
- logging.info(self.client.info())
- index_name = self._get_index()
- if self.client.indices.exists(index=index_name):
- print(f"Index '{index_name}' already exists.")
- return
- index_body = {
- "settings": {"knn": True},
- "mappings": {
- "properties": {
- "text": {"type": "text"},
- "embeddings": {
- "type": "knn_vector",
- "index": False,
- "dimension": self.config.vector_dimension,
- },
- }
- },
- }
- self.client.indices.create(index_name, body=index_body)
- print(self.client.indices.get(index_name))
- def _get_or_create_db(self):
- """Called during initialization"""
- return self.client
- def _get_or_create_collection(self, name):
- """Note: nothing to return here. Discuss later"""
- def get(
- self, ids: Optional[list[str]] = None, where: Optional[dict[str, any]] = None, limit: Optional[int] = None
- ) -> set[str]:
- """
- Get existing doc ids present in vector database
- :param ids: _list of doc ids to check for existence
- :type ids: list[str]
- :param where: to filter data
- :type where: dict[str, any]
- :return: ids
- :type: set[str]
- """
- query = {}
- if ids:
- query["query"] = {"bool": {"must": [{"ids": {"values": ids}}]}}
- else:
- query["query"] = {"bool": {"must": []}}
- if where:
- for key, value in where.items():
- query["query"]["bool"]["must"].append({"term": {f"metadata.{key}.keyword": value}})
- # OpenSearch syntax is different from Elasticsearch
- response = self.client.search(index=self._get_index(), body=query, _source=True, size=limit)
- docs = response["hits"]["hits"]
- ids = [doc["_id"] for doc in docs]
- doc_ids = [doc["_source"]["metadata"]["doc_id"] for doc in docs]
- # Result is modified for compatibility with other vector databases
- # TODO: Add method in vector database to return result in a standard format
- result = {"ids": ids, "metadatas": []}
- for doc_id in doc_ids:
- result["metadatas"].append({"doc_id": doc_id})
- return result
- def add(self, documents: list[str], metadatas: list[object], ids: list[str], **kwargs: Optional[dict[str, any]]):
- """Adds documents to the opensearch index"""
- embeddings = self.embedder.embedding_fn(documents)
- for batch_start in tqdm(range(0, len(documents), self.BATCH_SIZE), desc="Inserting batches in opensearch"):
- batch_end = batch_start + self.BATCH_SIZE
- batch_documents = documents[batch_start:batch_end]
- batch_embeddings = embeddings[batch_start:batch_end]
- # Create document entries for bulk upload
- batch_entries = [
- {
- "_index": self._get_index(),
- "_id": doc_id,
- "_source": {"text": text, "metadata": metadata, "embeddings": embedding},
- }
- for doc_id, text, metadata, embedding in zip(
- ids[batch_start:batch_end], batch_documents, metadatas[batch_start:batch_end], batch_embeddings
- )
- ]
- # Perform bulk operation
- bulk(self.client, batch_entries, **kwargs)
- self.client.indices.refresh(index=self._get_index())
- # Sleep to avoid rate limiting
- time.sleep(0.1)
- def query(
- self,
- input_query: list[str],
- n_results: int,
- where: dict[str, any],
- citations: bool = False,
- **kwargs: Optional[dict[str, Any]],
- ) -> Union[list[tuple[str, dict]], list[str]]:
- """
- query contents from vector database based on vector similarity
- :param input_query: list of query string
- :type input_query: list[str]
- :param n_results: no of similar documents to fetch from database
- :type n_results: int
- :param where: Optional. to filter data
- :type where: dict[str, any]
- :param citations: we use citations boolean param to return context along with the answer.
- :type citations: bool, default is False.
- :return: The content of the document that matched your query,
- along with url of the source and doc_id (if citations flag is true)
- :rtype: list[str], if citations=False, otherwise list[tuple[str, str, str]]
- """
- embeddings = OpenAIEmbeddings()
- docsearch = OpenSearchVectorSearch(
- index_name=self._get_index(),
- embedding_function=embeddings,
- opensearch_url=f"{self.config.opensearch_url}",
- http_auth=self.config.http_auth,
- use_ssl=hasattr(self.config, "use_ssl") and self.config.use_ssl,
- verify_certs=hasattr(self.config, "verify_certs") and self.config.verify_certs,
- )
- pre_filter = {"match_all": {}} # default
- if len(where) > 0:
- pre_filter = {"bool": {"must": []}}
- for key, value in where.items():
- pre_filter["bool"]["must"].append({"term": {f"metadata.{key}.keyword": value}})
- docs = docsearch.similarity_search_with_score(
- input_query,
- search_type="script_scoring",
- space_type="cosinesimil",
- vector_field="embeddings",
- text_field="text",
- metadata_field="metadata",
- pre_filter=pre_filter,
- k=n_results,
- **kwargs,
- )
- contexts = []
- for doc, score in docs:
- context = doc.page_content
- if citations:
- metadata = doc.metadata
- metadata["score"] = score
- contexts.append(tuple((context, metadata)))
- else:
- contexts.append(context)
- return contexts
- def set_collection_name(self, name: str):
- """
- Set the name of the collection. A collection is an isolated space for vectors.
- :param name: Name of the collection.
- :type name: str
- """
- if not isinstance(name, str):
- raise TypeError("Collection name must be a string")
- self.config.collection_name = name
- def count(self) -> int:
- """
- Count number of documents/chunks embedded in the database.
- :return: number of documents
- :rtype: int
- """
- query = {"query": {"match_all": {}}}
- response = self.client.count(index=self._get_index(), body=query)
- doc_count = response["count"]
- return doc_count
- def reset(self):
- """
- Resets the database. Deletes all embeddings irreversibly.
- """
- # Delete all data from the database
- if self.client.indices.exists(index=self._get_index()):
- # delete index in ES
- self.client.indices.delete(index=self._get_index())
- def delete(self, where):
- """Deletes a document from the OpenSearch index"""
- query = {"query": {"bool": {"must": []}}}
- for key, value in where.items():
- query["query"]["bool"]["must"].append({"term": {f"metadata.{key}.keyword": value}})
- self.client.delete_by_query(index=self._get_index(), body=query)
- def _get_index(self) -> str:
- """Get the OpenSearch index for a collection
- :return: OpenSearch index
- :rtype: str
- """
- return self.config.collection_name
|