123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960 |
- import pytest
- from langchain_community.llms.gpt4all import GPT4All as LangchainGPT4All
- from embedchain.config import BaseLlmConfig
- from embedchain.llm.gpt4all import GPT4ALLLlm
- @pytest.fixture
- def config():
- config = BaseLlmConfig(
- temperature=0.7,
- max_tokens=50,
- top_p=0.8,
- stream=False,
- system_prompt="System prompt",
- model="orca-mini-3b-gguf2-q4_0.gguf",
- )
- yield config
- @pytest.fixture
- def gpt4all_with_config(config):
- return GPT4ALLLlm(config=config)
- @pytest.fixture
- def gpt4all_without_config():
- return GPT4ALLLlm()
- def test_gpt4all_init_with_config(config, gpt4all_with_config):
- assert gpt4all_with_config.config.temperature == config.temperature
- assert gpt4all_with_config.config.max_tokens == config.max_tokens
- assert gpt4all_with_config.config.top_p == config.top_p
- assert gpt4all_with_config.config.stream == config.stream
- assert gpt4all_with_config.config.system_prompt == config.system_prompt
- assert gpt4all_with_config.config.model == config.model
- assert isinstance(gpt4all_with_config.instance, LangchainGPT4All)
- def test_gpt4all_init_without_config(gpt4all_without_config):
- assert gpt4all_without_config.config.model == "orca-mini-3b-gguf2-q4_0.gguf"
- assert isinstance(gpt4all_without_config.instance, LangchainGPT4All)
- def test_get_llm_model_answer(mocker, gpt4all_with_config):
- test_query = "Test query"
- test_answer = "Test answer"
- mocked_get_answer = mocker.patch("embedchain.llm.gpt4all.GPT4ALLLlm._get_answer", return_value=test_answer)
- answer = gpt4all_with_config.get_llm_model_answer(test_query)
- assert answer == test_answer
- mocked_get_answer.assert_called_once_with(prompt=test_query, config=gpt4all_with_config.config)
- def test_gpt4all_model_switching(gpt4all_with_config):
- with pytest.raises(RuntimeError, match="GPT4ALLLlm does not support switching models at runtime."):
- gpt4all_with_config._get_answer("Test prompt", BaseLlmConfig(model="new_model"))
|