123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566 |
- import importlib
- import os
- from typing import Any, Optional
- from langchain_cohere import ChatCohere
- from embedchain.config import BaseLlmConfig
- from embedchain.helpers.json_serializable import register_deserializable
- from embedchain.llm.base import BaseLlm
- @register_deserializable
- class CohereLlm(BaseLlm):
- def __init__(self, config: Optional[BaseLlmConfig] = None):
- try:
- importlib.import_module("cohere")
- except ModuleNotFoundError:
- raise ModuleNotFoundError(
- "The required dependencies for Cohere are not installed."
- "Please install with `pip install langchain_cohere==1.16.0`"
- ) from None
- super().__init__(config=config)
- if not self.config.api_key and "COHERE_API_KEY" not in os.environ:
- raise ValueError("Please set the COHERE_API_KEY environment variable or pass it in the config.")
- def get_llm_model_answer(self, prompt) -> tuple[str, Optional[dict[str, Any]]]:
- if self.config.system_prompt:
- raise ValueError("CohereLlm does not support `system_prompt`")
- if self.config.token_usage:
- response, token_info = self._get_answer(prompt, self.config)
- model_name = "cohere/" + self.config.model
- if model_name not in self.config.model_pricing_map:
- raise ValueError(
- f"Model {model_name} not found in `model_prices_and_context_window.json`. \
- You can disable token usage by setting `token_usage` to False."
- )
- total_cost = (
- self.config.model_pricing_map[model_name]["input_cost_per_token"] * token_info["input_tokens"]
- ) + self.config.model_pricing_map[model_name]["output_cost_per_token"] * token_info["output_tokens"]
- response_token_info = {
- "prompt_tokens": token_info["input_tokens"],
- "completion_tokens": token_info["output_tokens"],
- "total_tokens": token_info["input_tokens"] + token_info["output_tokens"],
- "total_cost": round(total_cost, 10),
- "cost_currency": "USD",
- }
- return response, response_token_info
- return self._get_answer(prompt, self.config)
- @staticmethod
- def _get_answer(prompt: str, config: BaseLlmConfig) -> str:
- api_key = config.api_key or os.environ["COHERE_API_KEY"]
- kwargs = {
- "model_name": config.model or "command-r",
- "temperature": config.temperature,
- "max_tokens": config.max_tokens,
- "together_api_key": api_key,
- }
- chat = ChatCohere(**kwargs)
- chat_response = chat.invoke(prompt)
- if config.token_usage:
- return chat_response.content, chat_response.response_metadata["token_count"]
- return chat_response.content
|