openai.py 2.8 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576
  1. import json
  2. import os
  3. from typing import Any, Callable, Dict, Optional, Type, Union
  4. from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
  5. from langchain.schema import BaseMessage, HumanMessage, SystemMessage
  6. from langchain_core.tools import BaseTool
  7. from langchain_openai import ChatOpenAI
  8. from pydantic import BaseModel
  9. from embedchain.config import BaseLlmConfig
  10. from embedchain.helpers.json_serializable import register_deserializable
  11. from embedchain.llm.base import BaseLlm
  12. @register_deserializable
  13. class OpenAILlm(BaseLlm):
  14. def __init__(
  15. self,
  16. config: Optional[BaseLlmConfig] = None,
  17. tools: Optional[Union[Dict[str, Any], Type[BaseModel], Callable[..., Any], BaseTool]] = None,
  18. ):
  19. self.tools = tools
  20. super().__init__(config=config)
  21. def get_llm_model_answer(self, prompt) -> str:
  22. response = self._get_answer(prompt, self.config)
  23. return response
  24. def _get_answer(self, prompt: str, config: BaseLlmConfig) -> str:
  25. messages = []
  26. if config.system_prompt:
  27. messages.append(SystemMessage(content=config.system_prompt))
  28. messages.append(HumanMessage(content=prompt))
  29. kwargs = {
  30. "model": config.model or "gpt-3.5-turbo",
  31. "temperature": config.temperature,
  32. "max_tokens": config.max_tokens,
  33. "model_kwargs": {},
  34. }
  35. api_key = config.api_key or os.environ["OPENAI_API_KEY"]
  36. base_url = config.base_url or os.environ.get("OPENAI_API_BASE", None)
  37. if config.top_p:
  38. kwargs["model_kwargs"]["top_p"] = config.top_p
  39. if config.stream:
  40. callbacks = config.callbacks if config.callbacks else [StreamingStdOutCallbackHandler()]
  41. chat = ChatOpenAI(
  42. **kwargs,
  43. streaming=config.stream,
  44. callbacks=callbacks,
  45. api_key=api_key,
  46. base_url=base_url,
  47. )
  48. else:
  49. chat = ChatOpenAI(**kwargs, api_key=api_key, base_url=base_url)
  50. if self.tools:
  51. return self._query_function_call(chat, self.tools, messages)
  52. return chat.invoke(messages).content
  53. def _query_function_call(
  54. self,
  55. chat: ChatOpenAI,
  56. tools: Optional[Union[Dict[str, Any], Type[BaseModel], Callable[..., Any], BaseTool]],
  57. messages: list[BaseMessage],
  58. ) -> str:
  59. from langchain.output_parsers.openai_tools import JsonOutputToolsParser
  60. from langchain_core.utils.function_calling import \
  61. convert_to_openai_tool
  62. openai_tools = [convert_to_openai_tool(tools)]
  63. chat = chat.bind(tools=openai_tools).pipe(JsonOutputToolsParser())
  64. try:
  65. return json.dumps(chat.invoke(messages)[0])
  66. except IndexError:
  67. return "Input could not be mapped to the function!"