Nav apraksta

Taranjeet Singh 564036a166 Bump version to 0.0.43 (#474) 2 gadi atpakaļ
.github abf99ce5ea chore: add release workflow (#397) 2 gadi atpakaļ
docs ed319531bf fix: dependencies (#416) 2 gadi atpakaļ
embedchain ed319531bf fix: dependencies (#416) 2 gadi atpakaļ
examples f29443a0fc [feat] Add support for creating whatsapp bot using embedchain (#458) 2 gadi atpakaļ
notebooks 96143ac496 docs: app config instead of init config (#308) 2 gadi atpakaļ
tests 4c8876f032 feat: add method - detect format / data_type (#380) 2 gadi atpakaļ
.env.example ac68986404 Add project tools and contributing guidelines (#281) 2 gadi atpakaļ
.gitignore c595003481 docs: setup docs for embedchain (#287) 2 gadi atpakaļ
.pre-commit-config.yaml ac68986404 Add project tools and contributing guidelines (#281) 2 gadi atpakaļ
CITATION.cff 736b645fea Add citation (#137) 2 gadi atpakaļ
CONTRIBUTING.md c595003481 docs: setup docs for embedchain (#287) 2 gadi atpakaļ
LICENSE 65d1ff37e8 Create LICENSE 2 gadi atpakaļ
Makefile 05a4eef6ae chores: run lint and format (#284) 2 gadi atpakaļ
README.md 4c8876f032 feat: add method - detect format / data_type (#380) 2 gadi atpakaļ
poetry.toml ac68986404 Add project tools and contributing guidelines (#281) 2 gadi atpakaļ
pyproject.toml 564036a166 Bump version to 0.0.43 (#474) 2 gadi atpakaļ

README.md

embedchain

PyPI Discord Twitter Substack Open in Colab

Embedchain is a framework to easily create LLM powered bots over any dataset. If you want a javascript version, check out embedchain-js

🔧 Quick install

pip install embedchain

🔥 Latest

  • [2023/07/19] Released support for 🦙 llama2 model. Start creating your llama2 based bots like this:
  import os

  from embedchain import Llama2App

  os.environ['REPLICATE_API_TOKEN'] = "REPLICATE API TOKEN"

  zuck_bot = Llama2App()

  # Embed your data
  zuck_bot.add("https://www.youtube.com/watch?v=Ff4fRgnuFgQ")
  zuck_bot.add("https://en.wikipedia.org/wiki/Mark_Zuckerberg")

  # Nice, your bot is ready now. Start asking questions to your bot.
  zuck_bot.query("Who is Mark Zuckerberg?")
  # Answer: Mark Zuckerberg is an American internet entrepreneur and business magnate. He is the co-founder and CEO of Facebook.

🔍 Demo

Try out embedchain in your browser:

Open in Colab

📖 Documentation

The documentation for embedchain can be found at docs.embedchain.ai.

💻 Usage

Embedchain empowers you to create chatbot models similar to ChatGPT, using your own evolving dataset.

Queries

For example, you can use Embedchain to create an Elon Musk bot using the following code:

import os
from embedchain import App

# Create a bot instance
os.environ["OPENAI_API_KEY"] = "YOUR API KEY"
elon_bot = App()

# Embed online resources
elon_bot.add("https://en.wikipedia.org/wiki/Elon_Musk")
elon_bot.add("https://tesla.com/elon-musk")
elon_bot.add("https://www.youtube.com/watch?v=MxZpaJK74Y4")

# Query the bot
elon_bot.query("How many companies does Elon Musk run?")
# Answer: Elon Musk runs four companies: Tesla, SpaceX, Neuralink, and The Boring Company

🤝 Contributing

Contributions are welcome! Please check out the issues on the repository, and feel free to open a pull request. For more information, please see the contributing guidelines.

For more refrence, please go through Development Guide and Documentation Guide.

Citation

If you utilize this repository, please consider citing it with:

@misc{embedchain,
  author = {Taranjeet Singh},
  title = {Embedchain: Framework to easily create LLM powered bots over any dataset},
  year = {2023},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/embedchain/embedchain}},
}