123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112 |
- ---
- title: '🚀 Streamlit'
- description: 'Integrate with Streamlit to plug and play with any LLM'
- ---
- In this example, we will learn how to use `mistralai/Mixtral-8x7B-Instruct-v0.1` and Embedchain together with Streamlit to build a simple RAG chatbot.
- 
- ## Setup
- Install Embedchain and Streamlit.
- ```bash
- pip install embedchain streamlit
- ```
- <Tabs>
- <Tab title="app.py">
- ```python
- import os
- from embedchain import App
- import streamlit as st
- with st.sidebar:
- huggingface_access_token = st.text_input("Hugging face Token", key="chatbot_api_key", type="password")
- "[Get Hugging Face Access Token](https://huggingface.co/settings/tokens)"
- "[View the source code](https://github.com/embedchain/examples/mistral-streamlit)"
- st.title("💬 Chatbot")
- st.caption("🚀 An Embedchain app powered by Mistral!")
- if "messages" not in st.session_state:
- st.session_state.messages = [
- {
- "role": "assistant",
- "content": """
- Hi! I'm a chatbot. I can answer questions and learn new things!\n
- Ask me anything and if you want me to learn something do `/add <source>`.\n
- I can learn mostly everything. :)
- """,
- }
- ]
- for message in st.session_state.messages:
- with st.chat_message(message["role"]):
- st.markdown(message["content"])
- if prompt := st.chat_input("Ask me anything!"):
- if not st.session_state.chatbot_api_key:
- st.error("Please enter your Hugging Face Access Token")
- st.stop()
- os.environ["HUGGINGFACE_ACCESS_TOKEN"] = st.session_state.chatbot_api_key
- app = App.from_config(config_path="config.yaml")
- if prompt.startswith("/add"):
- with st.chat_message("user"):
- st.markdown(prompt)
- st.session_state.messages.append({"role": "user", "content": prompt})
- prompt = prompt.replace("/add", "").strip()
- with st.chat_message("assistant"):
- message_placeholder = st.empty()
- message_placeholder.markdown("Adding to knowledge base...")
- app.add(prompt)
- message_placeholder.markdown(f"Added {prompt} to knowledge base!")
- st.session_state.messages.append({"role": "assistant", "content": f"Added {prompt} to knowledge base!"})
- st.stop()
- with st.chat_message("user"):
- st.markdown(prompt)
- st.session_state.messages.append({"role": "user", "content": prompt})
- with st.chat_message("assistant"):
- msg_placeholder = st.empty()
- msg_placeholder.markdown("Thinking...")
- full_response = ""
- for response in app.chat(prompt):
- msg_placeholder.empty()
- full_response += response
- msg_placeholder.markdown(full_response)
- st.session_state.messages.append({"role": "assistant", "content": full_response})
- ```
- </Tab>
- <Tab title="config.yaml">
- ```yaml
- app:
- config:
- name: 'mistral-streamlit-app'
- llm:
- provider: huggingface
- config:
- model: 'mistralai/Mixtral-8x7B-Instruct-v0.1'
- temperature: 0.1
- max_tokens: 250
- top_p: 0.1
- stream: true
- embedder:
- provider: huggingface
- config:
- model: 'sentence-transformers/all-mpnet-base-v2'
- ```
- </Tab>
- </Tabs>
- ## To run it locally,
- ```bash
- streamlit run app.py
- ```
|