factory.py 4.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104
  1. import importlib
  2. def load_class(class_type):
  3. module_path, class_name = class_type.rsplit(".", 1)
  4. module = importlib.import_module(module_path)
  5. return getattr(module, class_name)
  6. class LlmFactory:
  7. provider_to_class = {
  8. "anthropic": "embedchain.llm.anthropic.AnthropicLlm",
  9. "azure_openai": "embedchain.llm.azure_openai.AzureOpenAILlm",
  10. "cohere": "embedchain.llm.cohere.CohereLlm",
  11. "together": "embedchain.llm.together.TogetherLlm",
  12. "gpt4all": "embedchain.llm.gpt4all.GPT4ALLLlm",
  13. "ollama": "embedchain.llm.ollama.OllamaLlm",
  14. "huggingface": "embedchain.llm.huggingface.HuggingFaceLlm",
  15. "jina": "embedchain.llm.jina.JinaLlm",
  16. "llama2": "embedchain.llm.llama2.Llama2Llm",
  17. "openai": "embedchain.llm.openai.OpenAILlm",
  18. "vertexai": "embedchain.llm.vertex_ai.VertexAILlm",
  19. "google": "embedchain.llm.google.GoogleLlm",
  20. }
  21. provider_to_config_class = {
  22. "embedchain": "embedchain.config.llm.base.BaseLlmConfig",
  23. "openai": "embedchain.config.llm.base.BaseLlmConfig",
  24. "anthropic": "embedchain.config.llm.base.BaseLlmConfig",
  25. }
  26. @classmethod
  27. def create(cls, provider_name, config_data):
  28. class_type = cls.provider_to_class.get(provider_name)
  29. # Default to embedchain base config if the provider is not in the config map
  30. config_name = "embedchain" if provider_name not in cls.provider_to_config_class else provider_name
  31. config_class_type = cls.provider_to_config_class.get(config_name)
  32. if class_type:
  33. llm_class = load_class(class_type)
  34. llm_config_class = load_class(config_class_type)
  35. return llm_class(config=llm_config_class(**config_data))
  36. else:
  37. raise ValueError(f"Unsupported Llm provider: {provider_name}")
  38. class EmbedderFactory:
  39. provider_to_class = {
  40. "azure_openai": "embedchain.embedder.openai.OpenAIEmbedder",
  41. "gpt4all": "embedchain.embedder.gpt4all.GPT4AllEmbedder",
  42. "huggingface": "embedchain.embedder.huggingface.HuggingFaceEmbedder",
  43. "openai": "embedchain.embedder.openai.OpenAIEmbedder",
  44. "vertexai": "embedchain.embedder.vertexai.VertexAIEmbedder",
  45. "google": "embedchain.embedder.google.GoogleAIEmbedder",
  46. }
  47. provider_to_config_class = {
  48. "azure_openai": "embedchain.config.embedder.base.BaseEmbedderConfig",
  49. "openai": "embedchain.config.embedder.base.BaseEmbedderConfig",
  50. "gpt4all": "embedchain.config.embedder.base.BaseEmbedderConfig",
  51. "google": "embedchain.config.embedder.google.GoogleAIEmbedderConfig",
  52. }
  53. @classmethod
  54. def create(cls, provider_name, config_data):
  55. class_type = cls.provider_to_class.get(provider_name)
  56. # Default to openai config if the provider is not in the config map
  57. config_name = "openai" if provider_name not in cls.provider_to_config_class else provider_name
  58. config_class_type = cls.provider_to_config_class.get(config_name)
  59. if class_type:
  60. embedder_class = load_class(class_type)
  61. embedder_config_class = load_class(config_class_type)
  62. return embedder_class(config=embedder_config_class(**config_data))
  63. else:
  64. raise ValueError(f"Unsupported Embedder provider: {provider_name}")
  65. class VectorDBFactory:
  66. provider_to_class = {
  67. "chroma": "embedchain.vectordb.chroma.ChromaDB",
  68. "elasticsearch": "embedchain.vectordb.elasticsearch.ElasticsearchDB",
  69. "opensearch": "embedchain.vectordb.opensearch.OpenSearchDB",
  70. "pinecone": "embedchain.vectordb.pinecone.PineconeDB",
  71. "qdrant": "embedchain.vectordb.qdrant.QdrantDB",
  72. "weaviate": "embedchain.vectordb.weaviate.WeaviateDB",
  73. "zilliz": "embedchain.vectordb.zilliz.ZillizVectorDB",
  74. }
  75. provider_to_config_class = {
  76. "chroma": "embedchain.config.vectordb.chroma.ChromaDbConfig",
  77. "elasticsearch": "embedchain.config.vectordb.elasticsearch.ElasticsearchDBConfig",
  78. "opensearch": "embedchain.config.vectordb.opensearch.OpenSearchDBConfig",
  79. "pinecone": "embedchain.config.vectordb.pinecone.PineconeDBConfig",
  80. "qdrant": "embedchain.config.vectordb.qdrant.QdrantDBConfig",
  81. "weaviate": "embedchain.config.vectordb.weaviate.WeaviateDBConfig",
  82. "zilliz": "embedchain.config.vectordb.zilliz.ZillizDBConfig",
  83. }
  84. @classmethod
  85. def create(cls, provider_name, config_data):
  86. class_type = cls.provider_to_class.get(provider_name)
  87. config_class_type = cls.provider_to_config_class.get(provider_name)
  88. if class_type:
  89. embedder_class = load_class(class_type)
  90. embedder_config_class = load_class(config_class_type)
  91. return embedder_class(config=embedder_config_class(**config_data))
  92. else:
  93. raise ValueError(f"Unsupported Embedder provider: {provider_name}")