12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758 |
- ---
- title: '🚀 Quickstart'
- description: '💡 Start building LLM powered apps under 30 seconds'
- ---
- Embedchain is a Data Platform for LLMs - load, index, retrieve, and sync any unstructured data. Using embedchain, you can easily create LLM powered apps over any data.
- Install embedchain python package:
- ```bash
- pip install embedchain
- ```
- Creating an app involves 3 steps:
- <Steps>
- <Step title="⚙️ Import app instance">
- ```python
- from embedchain import App
- app = App()
- ```
- </Step>
- <Step title="🗃️ Add data sources">
- ```python
- # Add different data sources
- elon_bot.add("https://en.wikipedia.org/wiki/Elon_Musk")
- elon_bot.add("https://www.forbes.com/profile/elon-musk")
- # You can also add local data sources such as pdf, csv files etc.
- # elon_bot.add("/path/to/file.pdf")
- ```
- </Step>
- <Step title="💬 Query or chat on your data and get answers">
- ```python
- elon_bot.query("What is the net worth of Elon Musk today?")
- # Answer: The net worth of Elon Musk today is $258.7 billion.
- ```
- </Step>
- </Steps>
- Putting it together, you can run your first app using the following code. Make sure to set the `OPENAI_API_KEY` 🔑 environment variable in the code.
- ```python
- import os
- from embedchain import App
- os.environ["OPENAI_API_KEY"] = "xxx"
- elon_bot = App()
- # Add different data sources
- elon_bot.add("https://en.wikipedia.org/wiki/Elon_Musk")
- elon_bot.add("https://www.forbes.com/profile/elon-musk")
- # You can also add local data sources such as pdf, csv files etc.
- # elon_bot.add("/path/to/file.pdf")
- response = elon_bot.query("What is the net worth of Elon Musk today?")
- print(response)
- # Answer: The net worth of Elon Musk today is $258.7 billion.
- ```
|