1234567891011121314151617181920212223242526272829303132333435363738394041424344 |
- import logging
- import os # noqa: F401
- from typing import Any
- from gptcache import cache # noqa: F401
- from gptcache.adapter.adapter import adapt # noqa: F401
- from gptcache.config import Config # noqa: F401
- from gptcache.manager import get_data_manager
- from gptcache.manager.scalar_data.base import Answer
- from gptcache.manager.scalar_data.base import DataType as CacheDataType
- from gptcache.session import Session
- from gptcache.similarity_evaluation.distance import \
- SearchDistanceEvaluation # noqa: F401
- from gptcache.similarity_evaluation.exact_match import \
- ExactMatchEvaluation # noqa: F401
- logger = logging.getLogger(__name__)
- def gptcache_pre_function(data: dict[str, Any], **params: dict[str, Any]):
- return data["input_query"]
- def gptcache_data_manager(vector_dimension):
- return get_data_manager(cache_base="sqlite", vector_base="chromadb", max_size=1000, eviction="LRU")
- def gptcache_data_convert(cache_data):
- logger.info("[Cache] Cache hit, returning cache data...")
- return cache_data
- def gptcache_update_cache_callback(llm_data, update_cache_func, *args, **kwargs):
- logger.info("[Cache] Cache missed, updating cache...")
- update_cache_func(Answer(llm_data, CacheDataType.STR))
- return llm_data
- def _gptcache_session_hit_func(cur_session_id: str, cache_session_ids: list, cache_questions: list, cache_answer: str):
- return cur_session_id in cache_session_ids
- def get_gptcache_session(session_id: str):
- return Session(name=session_id, check_hit_func=_gptcache_session_hit_func)
|