123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109 |
- ---
- title: Customer Support AI Agent
- ---
- You can create a personalized Customer Support AI Agent using Mem0. This guide will walk you through the necessary steps and provide the complete code to get you started.
- ## Overview
- The Customer Support AI Agent leverages Mem0 to retain information across interactions, enabling a personalized and efficient support experience.
- ## Setup
- Install the necessary packages using pip:
- ```bash
- pip install openai mem0ai
- ```
- ## Full Code Example
- Below is the simplified code to create and interact with a Customer Support AI Agent using Mem0:
- ```python
- from openai import OpenAI
- from mem0 import Memory
- # Set the OpenAI API key
- os.environ['OPENAI_API_KEY'] = 'sk-xxx'
- class CustomerSupportAIAgent:
- def __init__(self):
- """
- Initialize the CustomerSupportAIAgent with memory configuration and OpenAI client.
- """
- config = {
- "vector_store": {
- "provider": "qdrant",
- "config": {
- "host": "localhost",
- "port": 6333,
- }
- },
- }
- self.memory = Memory.from_config(config)
- self.client = OpenAI()
- self.app_id = "customer-support"
- def handle_query(self, query, user_id=None):
- """
- Handle a customer query and store the relevant information in memory.
- :param query: The customer query to handle.
- :param user_id: Optional user ID to associate with the memory.
- """
- # Start a streaming chat completion request to the AI
- stream = self.client.chat.completions.create(
- model="gpt-4",
- stream=True,
- messages=[
- {"role": "system", "content": "You are a customer support AI agent."},
- {"role": "user", "content": query}
- ]
- )
- # Store the query in memory
- self.memory.add(query, user_id=user_id, metadata={"app_id": self.app_id})
- # Print the response from the AI in real-time
- for chunk in stream:
- if chunk.choices[0].delta.content is not None:
- print(chunk.choices[0].delta.content, end="")
- def get_memories(self, user_id=None):
- """
- Retrieve all memories associated with the given customer ID.
- :param user_id: Optional user ID to filter memories.
- :return: List of memories.
- """
- return self.memory.get_all(user_id=user_id)
- # Instantiate the CustomerSupportAIAgent
- support_agent = CustomerSupportAIAgent()
- # Define a customer ID
- customer_id = "jane_doe"
- # Handle a customer query
- support_agent.handle_query("I need help with my recent order. It hasn't arrived yet.", user_id=customer_id)
- ```
- ### Fetching Memories
- You can fetch all the memories at any point in time using the following code:
- ```python
- memories = support_agent.get_memories(user_id=customer_id)
- for m in memories:
- print(m['text'])
- ```
- ### Key Points
- - **Initialization**: The CustomerSupportAIAgent class is initialized with the necessary memory configuration and OpenAI client setup.
- - **Handling Queries**: The handle_query method sends a query to the AI and stores the relevant information in memory.
- - **Retrieving Memories**: The get_memories method fetches all stored memories associated with a customer.
- ### Conclusion
- As the conversation progresses, Mem0's memory automatically updates based on the interactions, providing a continuously improving personalized support experience.
|