12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697 |
- import queue
- import streamlit as st
- from embedchain import Pipeline as App
- from embedchain.config import BaseLlmConfig
- from embedchain.helpers.callbacks import StreamingStdOutCallbackHandlerYield, generate
- @st.cache_resource
- def unacademy_ai():
- app = App()
- return app
- app = unacademy_ai()
- assistant_avatar_url = "https://cdn-images-1.medium.com/v2/resize:fit:1200/1*LdFNhpOe7uIn-bHK9VUinA.jpeg"
- st.markdown(f"# <img src='{assistant_avatar_url}' width={35} /> Unacademy UPSC AI", unsafe_allow_html=True)
- styled_caption = """
- <p style="font-size: 17px; color: #aaa;">🚀 An <a href="https://github.com/embedchain/embedchain">Embedchain</a> app powered with Unacademy\'s UPSC data!</p>
- """
- st.markdown(styled_caption, unsafe_allow_html=True)
- with st.expander(":grey[Want to create your own Unacademy UPSC AI?]"):
- st.write(
- """
- ```bash
- pip install embedchain
- ```
- ```python
- from embedchain import Pipeline as App
- unacademy_ai_app = App()
- unacademy_ai_app.add("https://unacademy.com/content/upsc/study-material/plan-policy/atma-nirbhar-bharat-3-0/", data_type="web_page")
- unacademy_ai_app.chat("What is Atma Nirbhar 3.0?")
- ```
- For more information, checkout the [Embedchain docs](https://docs.embedchain.ai/get-started/quickstart).
- """
- )
- if "messages" not in st.session_state:
- st.session_state.messages = [
- {
- "role": "assistant",
- "content": """Hi, I'm Unacademy UPSC AI bot, who can answer any questions related to UPSC preparation. Let me help you prepare better for UPSC.\n
- Sample questions:
- - What are the subjects in UPSC CSE?
- - What is the CSE scholarship price amount?
- - What are different indian calendar forms?
- """,
- }
- ]
- for message in st.session_state.messages:
- role = message["role"]
- with st.chat_message(role, avatar=assistant_avatar_url if role == "assistant" else None):
- st.markdown(message["content"])
- if prompt := st.chat_input("Ask me anything!"):
- with st.chat_message("user"):
- st.markdown(prompt)
- st.session_state.messages.append({"role": "user", "content": prompt})
- with st.chat_message("assistant", avatar=assistant_avatar_url):
- msg_placeholder = st.empty()
- msg_placeholder.markdown("Thinking...")
- full_response = ""
- q = queue.Queue()
- def app_response(result):
- llm_config = app.llm.config.as_dict()
- llm_config["callbacks"] = [StreamingStdOutCallbackHandlerYield(q=q)]
- config = BaseLlmConfig(**llm_config)
- answer, citations = app.chat(prompt, config=config, citations=True)
- result["answer"] = answer
- result["citations"] = citations
- results = {}
- for answer_chunk in generate(q):
- full_response += answer_chunk
- msg_placeholder.markdown(full_response)
- answer, citations = results["answer"], results["citations"]
- if citations:
- full_response += "\n\n**Sources**:\n"
- sources = list(set(map(lambda x: x[1], citations)))
- for i, source in enumerate(sources):
- full_response += f"{i+1}. {source}\n"
- msg_placeholder.markdown(full_response)
- st.session_state.messages.append({"role": "assistant", "content": full_response})
|