openai.py 1.4 KB

12345678910111213141516171819202122232425262728293031323334353637383940
  1. from typing import Optional
  2. from langchain.chat_models import ChatOpenAI
  3. from langchain.schema import HumanMessage, SystemMessage
  4. from embedchain.config import BaseLlmConfig
  5. from embedchain.helper.json_serializable import register_deserializable
  6. from embedchain.llm.base import BaseLlm
  7. @register_deserializable
  8. class OpenAILlm(BaseLlm):
  9. def __init__(self, config: Optional[BaseLlmConfig] = None):
  10. super().__init__(config=config)
  11. def get_llm_model_answer(self, prompt) -> str:
  12. response = OpenAILlm._get_answer(prompt, self.config)
  13. return response
  14. def _get_answer(prompt: str, config: BaseLlmConfig) -> str:
  15. messages = []
  16. if config.system_prompt:
  17. messages.append(SystemMessage(content=config.system_prompt))
  18. messages.append(HumanMessage(content=prompt))
  19. kwargs = {
  20. "model": config.model or "gpt-3.5-turbo",
  21. "temperature": config.temperature,
  22. "max_tokens": config.max_tokens,
  23. "model_kwargs": {},
  24. }
  25. if config.top_p:
  26. kwargs["model_kwargs"]["top_p"] = config.top_p
  27. if config.stream:
  28. from langchain.callbacks.streaming_stdout import \
  29. StreamingStdOutCallbackHandler
  30. chat = ChatOpenAI(**kwargs, streaming=config.stream, callbacks=[StreamingStdOutCallbackHandler()])
  31. else:
  32. chat = ChatOpenAI(**kwargs)
  33. return chat(messages).content