1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889 |
- ---
- title: '⚡ Quickstart'
- description: '💡 Create an AI app on your own data in a minute'
- ---
- ## Installation
- First install the Python package:
- ```bash
- pip install embedchain
- ```
- Once you have installed the package, depending upon your preference you can either use:
- <CardGroup cols={2}>
- <Card title="Open Source Models" icon="osi" href="#open-source-models">
- This includes Open source LLMs like Mistral, Llama, etc.<br/>
- Free to use, and runs locally on your machine.
- </Card>
- <Card title="Paid Models" icon="dollar-sign" href="#paid-models" color="#4A154B">
- This includes paid LLMs like GPT 4, Claude, etc.<br/>
- Cost money and are accessible via an API.
- </Card>
- </CardGroup>
- ## Open Source Models
- This section gives a quickstart example of using Mistral as the Open source LLM and Sentence transformers as the Open source embedding model. These models are free and run mostly on your local machine.
- We are using Mistral hosted at Hugging Face, so will you need a Hugging Face token to run this example. Its *free* and you can create one [here](https://huggingface.co/docs/hub/security-tokens).
- <CodeGroup>
- ```python huggingface_demo.py
- import os
- # Replace this with your HF token
- os.environ["HUGGINGFACE_ACCESS_TOKEN"] = "hf_xxxx"
- from embedchain import App
- config = {
- 'llm': {
- 'provider': 'huggingface',
- 'config': {
- 'model': 'mistralai/Mistral-7B-Instruct-v0.2',
- 'top_p': 0.5
- }
- },
- 'embedder': {
- 'provider': 'huggingface',
- 'config': {
- 'model': 'sentence-transformers/all-mpnet-base-v2'
- }
- }
- }
- app = App.from_config(config=config)
- app.add("https://www.forbes.com/profile/elon-musk")
- app.add("https://en.wikipedia.org/wiki/Elon_Musk")
- app.query("What is the net worth of Elon Musk today?")
- # Answer: The net worth of Elon Musk today is $258.7 billion.
- ```
- </CodeGroup>
- ## Paid Models
- In this section, we will use both LLM and embedding model from OpenAI.
- ```python openai_demo.py
- import os
- from embedchain import App
- # Replace this with your OpenAI key
- os.environ["OPENAI_API_KEY"] = "sk-xxxx"
- app = App()
- app.add("https://www.forbes.com/profile/elon-musk")
- app.add("https://en.wikipedia.org/wiki/Elon_Musk")
- app.query("What is the net worth of Elon Musk today?")
- # Answer: The net worth of Elon Musk today is $258.7 billion.
- ```
- # Next Steps
- Now that you have created your first app, you can follow any of the links:
- * [Introduction](/get-started/introduction)
- * [Customization](/components/introduction)
- * [Use cases](/use-cases/introduction)
- * [Deployment](/get-started/deployment)
|