embedchain.py 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575
  1. import hashlib
  2. import importlib.metadata
  3. import json
  4. import logging
  5. import os
  6. import threading
  7. import uuid
  8. from pathlib import Path
  9. from typing import Any, Dict, List, Optional
  10. import requests
  11. from dotenv import load_dotenv
  12. from langchain.docstore.document import Document
  13. from tenacity import retry, stop_after_attempt, wait_fixed
  14. from embedchain.chunkers.base_chunker import BaseChunker
  15. from embedchain.config import AddConfig, BaseLlmConfig
  16. from embedchain.config.apps.base_app_config import BaseAppConfig
  17. from embedchain.data_formatter import DataFormatter
  18. from embedchain.embedder.base import BaseEmbedder
  19. from embedchain.helper.json_serializable import JSONSerializable
  20. from embedchain.llm.base import BaseLlm
  21. from embedchain.loaders.base_loader import BaseLoader
  22. from embedchain.models.data_type import DataType, DirectDataType, IndirectDataType, SpecialDataType
  23. from embedchain.utils import detect_datatype
  24. from embedchain.vectordb.base import BaseVectorDB
  25. load_dotenv()
  26. ABS_PATH = os.getcwd()
  27. HOME_DIR = str(Path.home())
  28. CONFIG_DIR = os.path.join(HOME_DIR, ".embedchain")
  29. CONFIG_FILE = os.path.join(CONFIG_DIR, "config.json")
  30. class EmbedChain(JSONSerializable):
  31. def __init__(
  32. self,
  33. config: BaseAppConfig,
  34. llm: BaseLlm,
  35. db: BaseVectorDB = None,
  36. embedder: BaseEmbedder = None,
  37. system_prompt: Optional[str] = None,
  38. ):
  39. """
  40. Initializes the EmbedChain instance, sets up a vector DB client and
  41. creates a collection.
  42. :param config: Configuration just for the app, not the db or llm or embedder.
  43. :type config: BaseAppConfig
  44. :param llm: Instance of the LLM you want to use.
  45. :type llm: BaseLlm
  46. :param db: Instance of the Database to use, defaults to None
  47. :type db: BaseVectorDB, optional
  48. :param embedder: instance of the embedder to use, defaults to None
  49. :type embedder: BaseEmbedder, optional
  50. :param system_prompt: System prompt to use in the llm query, defaults to None
  51. :type system_prompt: Optional[str], optional
  52. :raises ValueError: No database or embedder provided.
  53. """
  54. self.config = config
  55. # Add subclasses
  56. ## Llm
  57. self.llm = llm
  58. ## Database
  59. # Database has support for config assignment for backwards compatibility
  60. if db is None and (not hasattr(self.config, "db") or self.config.db is None):
  61. raise ValueError("App requires Database.")
  62. self.db = db or self.config.db
  63. ## Embedder
  64. if embedder is None:
  65. raise ValueError("App requires Embedder.")
  66. self.embedder = embedder
  67. # Initialize database
  68. self.db._set_embedder(self.embedder)
  69. self.db._initialize()
  70. # Set collection name from app config for backwards compatibility.
  71. if config.collection_name:
  72. self.db.set_collection_name(config.collection_name)
  73. # Add variables that are "shortcuts"
  74. if system_prompt:
  75. self.llm.config.system_prompt = system_prompt
  76. # Attributes that aren't subclass related.
  77. self.user_asks = []
  78. # Send anonymous telemetry
  79. self.s_id = self.config.id if self.config.id else str(uuid.uuid4())
  80. self.u_id = self._load_or_generate_user_id()
  81. # NOTE: Uncomment the next two lines when running tests to see if any test fires a telemetry event.
  82. # if (self.config.collect_metrics):
  83. # raise ConnectionRefusedError("Collection of metrics should not be allowed.")
  84. thread_telemetry = threading.Thread(target=self._send_telemetry_event, args=("init",))
  85. thread_telemetry.start()
  86. @property
  87. def collect_metrics(self):
  88. return self.config.collect_metrics
  89. @collect_metrics.setter
  90. def collect_metrics(self, value):
  91. if not isinstance(value, bool):
  92. raise ValueError(f"Boolean value expected but got {type(value)}.")
  93. self.config.collect_metrics = value
  94. @property
  95. def online(self):
  96. return self.llm.online
  97. @online.setter
  98. def online(self, value):
  99. if not isinstance(value, bool):
  100. raise ValueError(f"Boolean value expected but got {type(value)}.")
  101. self.llm.online = value
  102. def _load_or_generate_user_id(self) -> str:
  103. """
  104. Loads the user id from the config file if it exists, otherwise generates a new
  105. one and saves it to the config file.
  106. :return: user id
  107. :rtype: str
  108. """
  109. if not os.path.exists(CONFIG_DIR):
  110. os.makedirs(CONFIG_DIR)
  111. if os.path.exists(CONFIG_FILE):
  112. with open(CONFIG_FILE, "r") as f:
  113. data = json.load(f)
  114. if "user_id" in data:
  115. return data["user_id"]
  116. u_id = str(uuid.uuid4())
  117. with open(CONFIG_FILE, "w") as f:
  118. json.dump({"user_id": u_id}, f)
  119. return u_id
  120. def add(
  121. self,
  122. source: Any,
  123. data_type: Optional[DataType] = None,
  124. metadata: Optional[Dict[str, Any]] = None,
  125. config: Optional[AddConfig] = None,
  126. dry_run=False,
  127. ):
  128. """
  129. Adds the data from the given URL to the vector db.
  130. Loads the data, chunks it, create embedding for each chunk
  131. and then stores the embedding to vector database.
  132. :param source: The data to embed, can be a URL, local file or raw content, depending on the data type.
  133. :type source: Any
  134. :param data_type: Automatically detected, but can be forced with this argument. The type of the data to add,
  135. defaults to None
  136. :type data_type: Optional[DataType], optional
  137. :param metadata: Metadata associated with the data source., defaults to None
  138. :type metadata: Optional[Dict[str, Any]], optional
  139. :param config: The `AddConfig` instance to use as configuration options., defaults to None
  140. :type config: Optional[AddConfig], optional
  141. :raises ValueError: Invalid data type
  142. :param dry_run: Optional. A dry run displays the chunks to ensure that the loader and chunker work as intended.
  143. deafaults to False
  144. :return: source_id, a md5-hash of the source, in hexadecimal representation.
  145. :rtype: str
  146. """
  147. if config is None:
  148. config = AddConfig()
  149. try:
  150. DataType(source)
  151. logging.warning(
  152. f"""Starting from version v0.0.40, Embedchain can automatically detect the data type. So, in the `add` method, the argument order has changed. You no longer need to specify '{source}' for the `source` argument. So the code snippet will be `.add("{data_type}", "{source}")`""" # noqa #E501
  153. )
  154. logging.warning(
  155. "Embedchain is swapping the arguments for you. This functionality might be deprecated in the future, so please adjust your code." # noqa #E501
  156. )
  157. source, data_type = data_type, source
  158. except ValueError:
  159. pass
  160. if data_type:
  161. try:
  162. data_type = DataType(data_type)
  163. except ValueError:
  164. raise ValueError(
  165. f"Invalid data_type: '{data_type}'.",
  166. f"Please use one of the following: {[data_type.value for data_type in DataType]}",
  167. ) from None
  168. if not data_type:
  169. data_type = detect_datatype(source)
  170. # `source_id` is the hash of the source argument
  171. hash_object = hashlib.md5(str(source).encode("utf-8"))
  172. source_id = hash_object.hexdigest()
  173. data_formatter = DataFormatter(data_type, config)
  174. self.user_asks.append([source, data_type.value, metadata])
  175. documents, metadatas, _ids, new_chunks = self.load_and_embed(
  176. data_formatter.loader, data_formatter.chunker, source, metadata, source_id, dry_run
  177. )
  178. if data_type in {DataType.DOCS_SITE}:
  179. self.is_docs_site_instance = True
  180. if dry_run:
  181. data_chunks_info = {"chunks": documents, "metadata": metadatas, "count": len(documents), "type": data_type}
  182. logging.debug(f"Dry run info : {data_chunks_info}")
  183. return data_chunks_info
  184. # Send anonymous telemetry
  185. if self.config.collect_metrics:
  186. # it's quicker to check the variable twice than to count words when they won't be submitted.
  187. word_count = sum([len(document.split(" ")) for document in documents])
  188. extra_metadata = {"data_type": data_type.value, "word_count": word_count, "chunks_count": new_chunks}
  189. thread_telemetry = threading.Thread(target=self._send_telemetry_event, args=("add", extra_metadata))
  190. thread_telemetry.start()
  191. return source_id
  192. def add_local(
  193. self,
  194. source: Any,
  195. data_type: Optional[DataType] = None,
  196. metadata: Optional[Dict[str, Any]] = None,
  197. config: Optional[AddConfig] = None,
  198. ):
  199. """
  200. Adds the data from the given URL to the vector db.
  201. Loads the data, chunks it, create embedding for each chunk
  202. and then stores the embedding to vector database.
  203. Warning:
  204. This method is deprecated and will be removed in future versions. Use `add` instead.
  205. :param source: The data to embed, can be a URL, local file or raw content, depending on the data type.
  206. :type source: Any
  207. :param data_type: Automatically detected, but can be forced with this argument. The type of the data to add,
  208. defaults to None
  209. :type data_type: Optional[DataType], optional
  210. :param metadata: Metadata associated with the data source., defaults to None
  211. :type metadata: Optional[Dict[str, Any]], optional
  212. :param config: The `AddConfig` instance to use as configuration options., defaults to None
  213. :type config: Optional[AddConfig], optional
  214. :raises ValueError: Invalid data type
  215. :return: source_id, a md5-hash of the source, in hexadecimal representation.
  216. :rtype: str
  217. """
  218. logging.warning(
  219. "The `add_local` method is deprecated and will be removed in future versions. Please use the `add` method for both local and remote files." # noqa: E501
  220. )
  221. return self.add(source=source, data_type=data_type, metadata=metadata, config=config)
  222. def _get_existing_doc_id(self, chunker: BaseChunker, src: Any):
  223. """
  224. Get id of existing document for a given source, based on the data type
  225. """
  226. # Find existing embeddings for the source
  227. # Depending on the data type, existing embeddings are checked for.
  228. if chunker.data_type.value in [item.value for item in DirectDataType]:
  229. # DirectDataTypes can't be updated.
  230. # Think of a text:
  231. # Either it's the same, then it won't change, so it's not an update.
  232. # Or it's different, then it will be added as a new text.
  233. return None
  234. elif chunker.data_type.value in [item.value for item in IndirectDataType]:
  235. # These types have a indirect source reference
  236. # As long as the reference is the same, they can be updated.
  237. existing_embeddings_data = self.db.get(
  238. where={
  239. "url": src,
  240. },
  241. limit=1,
  242. )
  243. if len(existing_embeddings_data.get("metadatas", [])) > 0:
  244. return existing_embeddings_data["metadatas"][0]["doc_id"]
  245. else:
  246. return None
  247. elif chunker.data_type.value in [item.value for item in SpecialDataType]:
  248. # These types don't contain indirect references.
  249. # Through custom logic, they can be attributed to a source and be updated.
  250. if chunker.data_type == DataType.QNA_PAIR:
  251. # QNA_PAIRs update the answer if the question already exists.
  252. existing_embeddings_data = self.db.get(
  253. where={
  254. "question": src[0],
  255. },
  256. limit=1,
  257. )
  258. if len(existing_embeddings_data.get("metadatas", [])) > 0:
  259. return existing_embeddings_data["metadatas"][0]["doc_id"]
  260. else:
  261. return None
  262. else:
  263. raise NotImplementedError(
  264. f"SpecialDataType {chunker.data_type} must have a custom logic to check for existing data"
  265. )
  266. else:
  267. raise TypeError(
  268. f"{chunker.data_type} is type {type(chunker.data_type)}. "
  269. "When it should be DirectDataType, IndirectDataType or SpecialDataType."
  270. )
  271. def load_and_embed(
  272. self,
  273. loader: BaseLoader,
  274. chunker: BaseChunker,
  275. src: Any,
  276. metadata: Optional[Dict[str, Any]] = None,
  277. source_id: Optional[str] = None,
  278. dry_run=False,
  279. ):
  280. """
  281. Loads the data from the given URL, chunks it, and adds it to database.
  282. :param loader: The loader to use to load the data.
  283. :param chunker: The chunker to use to chunk the data.
  284. :param src: The data to be handled by the loader. Can be a URL for
  285. remote sources or local content for local loaders.
  286. :param metadata: Optional. Metadata associated with the data source.
  287. :param source_id: Hexadecimal hash of the source.
  288. :param dry_run: Optional. A dry run returns chunks and doesn't update DB.
  289. :type dry_run: bool, defaults to False
  290. :return: (List) documents (embedded text), (List) metadata, (list) ids, (int) number of chunks
  291. """
  292. existing_doc_id = self._get_existing_doc_id(chunker=chunker, src=src)
  293. # Create chunks
  294. embeddings_data = chunker.create_chunks(loader, src)
  295. # spread chunking results
  296. documents = embeddings_data["documents"]
  297. metadatas = embeddings_data["metadatas"]
  298. ids = embeddings_data["ids"]
  299. new_doc_id = embeddings_data["doc_id"]
  300. if existing_doc_id and existing_doc_id == new_doc_id:
  301. print("Doc content has not changed. Skipping creating chunks and embeddings")
  302. return [], [], [], 0
  303. # this means that doc content has changed.
  304. if existing_doc_id and existing_doc_id != new_doc_id:
  305. print("Doc content has changed. Recomputing chunks and embeddings intelligently.")
  306. self.db.delete({"doc_id": existing_doc_id})
  307. # get existing ids, and discard doc if any common id exist.
  308. where = {"app_id": self.config.id} if self.config.id is not None else {}
  309. # where={"url": src}
  310. db_result = self.db.get(
  311. ids=ids,
  312. where=where, # optional filter
  313. )
  314. existing_ids = set(db_result["ids"])
  315. if len(existing_ids):
  316. data_dict = {id: (doc, meta) for id, doc, meta in zip(ids, documents, metadatas)}
  317. data_dict = {id: value for id, value in data_dict.items() if id not in existing_ids}
  318. if not data_dict:
  319. src_copy = src
  320. if len(src_copy) > 50:
  321. src_copy = src[:50] + "..."
  322. print(f"All data from {src_copy} already exists in the database.")
  323. # Make sure to return a matching return type
  324. return [], [], [], 0
  325. ids = list(data_dict.keys())
  326. documents, metadatas = zip(*data_dict.values())
  327. # Loop though all metadatas and add extras.
  328. new_metadatas = []
  329. for m in metadatas:
  330. # Add app id in metadatas so that they can be queried on later
  331. if self.config.id:
  332. m["app_id"] = self.config.id
  333. # Add hashed source
  334. m["hash"] = source_id
  335. # Note: Metadata is the function argument
  336. if metadata:
  337. # Spread whatever is in metadata into the new object.
  338. m.update(metadata)
  339. new_metadatas.append(m)
  340. metadatas = new_metadatas
  341. if dry_run:
  342. return list(documents), metadatas, ids, 0
  343. # Count before, to calculate a delta in the end.
  344. chunks_before_addition = self.count()
  345. self.db.add(documents=documents, metadatas=metadatas, ids=ids)
  346. count_new_chunks = self.count() - chunks_before_addition
  347. print((f"Successfully saved {src} ({chunker.data_type}). New chunks count: {count_new_chunks}"))
  348. return list(documents), metadatas, ids, count_new_chunks
  349. def _format_result(self, results):
  350. return [
  351. (Document(page_content=result[0], metadata=result[1] or {}), result[2])
  352. for result in zip(
  353. results["documents"][0],
  354. results["metadatas"][0],
  355. results["distances"][0],
  356. )
  357. ]
  358. def retrieve_from_database(self, input_query: str, config: Optional[BaseLlmConfig] = None, where=None) -> List[str]:
  359. """
  360. Queries the vector database based on the given input query.
  361. Gets relevant doc based on the query
  362. :param input_query: The query to use.
  363. :type input_query: str
  364. :param config: The query configuration, defaults to None
  365. :type config: Optional[BaseLlmConfig], optional
  366. :param where: A dictionary of key-value pairs to filter the database results, defaults to None
  367. :type where: _type_, optional
  368. :return: List of contents of the document that matched your query
  369. :rtype: List[str]
  370. """
  371. query_config = config or self.llm.config
  372. if where is not None:
  373. where = where
  374. elif query_config is not None and query_config.where is not None:
  375. where = query_config.where
  376. else:
  377. where = {}
  378. if self.config.id is not None:
  379. where.update({"app_id": self.config.id})
  380. contents = self.db.query(
  381. input_query=input_query,
  382. n_results=query_config.number_documents,
  383. where=where,
  384. )
  385. return contents
  386. def query(self, input_query: str, config: BaseLlmConfig = None, dry_run=False, where: Optional[Dict] = None) -> str:
  387. """
  388. Queries the vector database based on the given input query.
  389. Gets relevant doc based on the query and then passes it to an
  390. LLM as context to get the answer.
  391. :param input_query: The query to use.
  392. :type input_query: str
  393. :param config: The `LlmConfig` instance to use as configuration options. This is used for one method call.
  394. To persistently use a config, declare it during app init., defaults to None
  395. :type config: Optional[BaseLlmConfig], optional
  396. :param dry_run: A dry run does everything except send the resulting prompt to
  397. the LLM. The purpose is to test the prompt, not the response., defaults to False
  398. :type dry_run: bool, optional
  399. :param where: A dictionary of key-value pairs to filter the database results., defaults to None
  400. :type where: Optional[Dict[str, str]], optional
  401. :return: The answer to the query or the dry run result
  402. :rtype: str
  403. """
  404. contexts = self.retrieve_from_database(input_query=input_query, config=config, where=where)
  405. answer = self.llm.query(input_query=input_query, contexts=contexts, config=config, dry_run=dry_run)
  406. # Send anonymous telemetry
  407. thread_telemetry = threading.Thread(target=self._send_telemetry_event, args=("query",))
  408. thread_telemetry.start()
  409. return answer
  410. def chat(
  411. self,
  412. input_query: str,
  413. config: Optional[BaseLlmConfig] = None,
  414. dry_run=False,
  415. where: Optional[Dict[str, str]] = None,
  416. ) -> str:
  417. """
  418. Queries the vector database on the given input query.
  419. Gets relevant doc based on the query and then passes it to an
  420. LLM as context to get the answer.
  421. Maintains the whole conversation in memory.
  422. :param input_query: The query to use.
  423. :type input_query: str
  424. :param config: The `LlmConfig` instance to use as configuration options. This is used for one method call.
  425. To persistently use a config, declare it during app init., defaults to None
  426. :type config: Optional[BaseLlmConfig], optional
  427. :param dry_run: A dry run does everything except send the resulting prompt to
  428. the LLM. The purpose is to test the prompt, not the response., defaults to False
  429. :type dry_run: bool, optional
  430. :param where: A dictionary of key-value pairs to filter the database results., defaults to None
  431. :type where: Optional[Dict[str, str]], optional
  432. :return: The answer to the query or the dry run result
  433. :rtype: str
  434. """
  435. contexts = self.retrieve_from_database(input_query=input_query, config=config, where=where)
  436. answer = self.llm.chat(input_query=input_query, contexts=contexts, config=config, dry_run=dry_run)
  437. # Send anonymous telemetry
  438. thread_telemetry = threading.Thread(target=self._send_telemetry_event, args=("chat",))
  439. thread_telemetry.start()
  440. return answer
  441. def set_collection_name(self, name: str):
  442. """
  443. Set the name of the collection. A collection is an isolated space for vectors.
  444. Using `app.db.set_collection_name` method is preferred to this.
  445. :param name: Name of the collection.
  446. :type name: str
  447. """
  448. self.db.set_collection_name(name)
  449. # Create the collection if it does not exist
  450. self.db._get_or_create_collection(name)
  451. # TODO: Check whether it is necessary to assign to the `self.collection` attribute,
  452. # since the main purpose is the creation.
  453. def count(self) -> int:
  454. """
  455. Count the number of embeddings.
  456. DEPRECATED IN FAVOR OF `db.count()`
  457. :return: The number of embeddings.
  458. :rtype: int
  459. """
  460. logging.warning("DEPRECATION WARNING: Please use `app.db.count()` instead of `app.count()`.")
  461. return self.db.count()
  462. def reset(self):
  463. """
  464. Resets the database. Deletes all embeddings irreversibly.
  465. `App` does not have to be reinitialized after using this method.
  466. DEPRECATED IN FAVOR OF `db.reset()`
  467. """
  468. # Send anonymous telemetry
  469. thread_telemetry = threading.Thread(target=self._send_telemetry_event, args=("reset",))
  470. thread_telemetry.start()
  471. logging.warning("DEPRECATION WARNING: Please use `app.db.reset()` instead of `App.reset()`.")
  472. self.db.reset()
  473. @retry(stop=stop_after_attempt(3), wait=wait_fixed(1))
  474. def _send_telemetry_event(self, method: str, extra_metadata: Optional[dict] = None):
  475. """
  476. Send telemetry event to the embedchain server. This is anonymous. It can be toggled off in `AppConfig`.
  477. """
  478. if not self.config.collect_metrics:
  479. return
  480. with threading.Lock():
  481. url = "https://api.embedchain.ai/api/v1/telemetry/"
  482. metadata = {
  483. "s_id": self.s_id,
  484. "version": importlib.metadata.version(__package__ or __name__),
  485. "method": method,
  486. "language": "py",
  487. "u_id": self.u_id,
  488. }
  489. if extra_metadata:
  490. metadata.update(extra_metadata)
  491. response = requests.post(url, json={"metadata": metadata})
  492. if response.status_code != 200:
  493. logging.warning(f"Telemetry event failed with status code {response.status_code}")