factory.py 5.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106
  1. import importlib
  2. def load_class(class_type):
  3. module_path, class_name = class_type.rsplit(".", 1)
  4. module = importlib.import_module(module_path)
  5. return getattr(module, class_name)
  6. class LlmFactory:
  7. provider_to_class = {
  8. "anthropic": "embedchain.llm.anthropic.AnthropicLlm",
  9. "azure_openai": "embedchain.llm.azure_openai.AzureOpenAILlm",
  10. "cohere": "embedchain.llm.cohere.CohereLlm",
  11. "together": "embedchain.llm.together.TogetherLlm",
  12. "gpt4all": "embedchain.llm.gpt4all.GPT4ALLLlm",
  13. "ollama": "embedchain.llm.ollama.OllamaLlm",
  14. "huggingface": "embedchain.llm.huggingface.HuggingFaceLlm",
  15. "jina": "embedchain.llm.jina.JinaLlm",
  16. "llama2": "embedchain.llm.llama2.Llama2Llm",
  17. "openai": "embedchain.llm.openai.OpenAILlm",
  18. "vertexai": "embedchain.llm.vertex_ai.VertexAILlm",
  19. "google": "embedchain.llm.google.GoogleLlm",
  20. "mistralai": "embedchain.llm.mistralai.MistralAILlm",
  21. }
  22. provider_to_config_class = {
  23. "embedchain": "embedchain.config.llm.base.BaseLlmConfig",
  24. "openai": "embedchain.config.llm.base.BaseLlmConfig",
  25. "anthropic": "embedchain.config.llm.base.BaseLlmConfig",
  26. }
  27. @classmethod
  28. def create(cls, provider_name, config_data):
  29. class_type = cls.provider_to_class.get(provider_name)
  30. # Default to embedchain base config if the provider is not in the config map
  31. config_name = "embedchain" if provider_name not in cls.provider_to_config_class else provider_name
  32. config_class_type = cls.provider_to_config_class.get(config_name)
  33. if class_type:
  34. llm_class = load_class(class_type)
  35. llm_config_class = load_class(config_class_type)
  36. return llm_class(config=llm_config_class(**config_data))
  37. else:
  38. raise ValueError(f"Unsupported Llm provider: {provider_name}")
  39. class EmbedderFactory:
  40. provider_to_class = {
  41. "azure_openai": "embedchain.embedder.openai.OpenAIEmbedder",
  42. "gpt4all": "embedchain.embedder.gpt4all.GPT4AllEmbedder",
  43. "huggingface": "embedchain.embedder.huggingface.HuggingFaceEmbedder",
  44. "openai": "embedchain.embedder.openai.OpenAIEmbedder",
  45. "vertexai": "embedchain.embedder.vertexai.VertexAIEmbedder",
  46. "google": "embedchain.embedder.google.GoogleAIEmbedder",
  47. "mistralai": "embedchain.embedder.mistralai.MistralAIEmbedder",
  48. }
  49. provider_to_config_class = {
  50. "azure_openai": "embedchain.config.embedder.base.BaseEmbedderConfig",
  51. "openai": "embedchain.config.embedder.base.BaseEmbedderConfig",
  52. "gpt4all": "embedchain.config.embedder.base.BaseEmbedderConfig",
  53. "google": "embedchain.config.embedder.google.GoogleAIEmbedderConfig",
  54. }
  55. @classmethod
  56. def create(cls, provider_name, config_data):
  57. class_type = cls.provider_to_class.get(provider_name)
  58. # Default to openai config if the provider is not in the config map
  59. config_name = "openai" if provider_name not in cls.provider_to_config_class else provider_name
  60. config_class_type = cls.provider_to_config_class.get(config_name)
  61. if class_type:
  62. embedder_class = load_class(class_type)
  63. embedder_config_class = load_class(config_class_type)
  64. return embedder_class(config=embedder_config_class(**config_data))
  65. else:
  66. raise ValueError(f"Unsupported Embedder provider: {provider_name}")
  67. class VectorDBFactory:
  68. provider_to_class = {
  69. "chroma": "embedchain.vectordb.chroma.ChromaDB",
  70. "elasticsearch": "embedchain.vectordb.elasticsearch.ElasticsearchDB",
  71. "opensearch": "embedchain.vectordb.opensearch.OpenSearchDB",
  72. "pinecone": "embedchain.vectordb.pinecone.PineconeDB",
  73. "qdrant": "embedchain.vectordb.qdrant.QdrantDB",
  74. "weaviate": "embedchain.vectordb.weaviate.WeaviateDB",
  75. "zilliz": "embedchain.vectordb.zilliz.ZillizVectorDB",
  76. }
  77. provider_to_config_class = {
  78. "chroma": "embedchain.config.vectordb.chroma.ChromaDbConfig",
  79. "elasticsearch": "embedchain.config.vectordb.elasticsearch.ElasticsearchDBConfig",
  80. "opensearch": "embedchain.config.vectordb.opensearch.OpenSearchDBConfig",
  81. "pinecone": "embedchain.config.vectordb.pinecone.PineconeDBConfig",
  82. "qdrant": "embedchain.config.vectordb.qdrant.QdrantDBConfig",
  83. "weaviate": "embedchain.config.vectordb.weaviate.WeaviateDBConfig",
  84. "zilliz": "embedchain.config.vectordb.zilliz.ZillizDBConfig",
  85. }
  86. @classmethod
  87. def create(cls, provider_name, config_data):
  88. class_type = cls.provider_to_class.get(provider_name)
  89. config_class_type = cls.provider_to_config_class.get(provider_name)
  90. if class_type:
  91. embedder_class = load_class(class_type)
  92. embedder_config_class = load_class(config_class_type)
  93. return embedder_class(config=embedder_config_class(**config_data))
  94. else:
  95. raise ValueError(f"Unsupported Embedder provider: {provider_name}")