1234567891011121314151617181920212223242526272829303132333435363738394041 |
- ---
- title: '📝 evaluate'
- ---
- `evaluate()` method is used to evaluate the performance of a RAG app. You can find the signature below:
- ### Parameters
- <ParamField path="question" type="Union[str, list[str]]">
- A question or a list of questions to evaluate your app on.
- </ParamField>
- <ParamField path="metrics" type="Optional[list[Union[BaseMetric, str]]]" optional>
- The metrics to evaluate your app on. Defaults to all metrics: `["context_relevancy", "answer_relevancy", "groundedness"]`
- </ParamField>
- <ParamField path="num_workers" type="int" optional>
- Specify the number of threads to use for parallel processing.
- </ParamField>
- ### Returns
- <ResponseField name="metrics" type="dict">
- Returns the metrics you have chosen to evaluate your app on as a dictionary.
- </ResponseField>
- ## Usage
- ```python
- from embedchain import App
- app = App()
- # add data source
- app.add("https://www.forbes.com/profile/elon-musk")
- # run evaluation
- app.evaluate("what is the net worth of Elon Musk?")
- # {'answer_relevancy': 0.958019958036268, 'context_relevancy': 0.12903225806451613}
- # or
- # app.evaluate(["what is the net worth of Elon Musk?", "which companies does Elon Musk own?"])
- ```
|