123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130 |
- ---
- title: "Pipeline"
- ---
- Create a RAG pipeline object on Embedchain. This is the main entrypoint for a developer to interact with Embedchain APIs. A pipeline configures the llm, vector database, embedding model, and retrieval strategy of your choice.
- ### Attributes
- <ParamField path="local_id" type="str">
- Pipeline ID
- </ParamField>
- <ParamField path="name" type="str" optional>
- Name of the pipeline
- </ParamField>
- <ParamField path="config" type="BaseConfig">
- Configuration of the pipeline
- </ParamField>
- <ParamField path="llm" type="BaseLlm">
- Configured LLM for the RAG pipeline
- </ParamField>
- <ParamField path="db" type="BaseVectorDB">
- Configured vector database for the RAG pipeline
- </ParamField>
- <ParamField path="embedding_model" type="BaseEmbedder">
- Configured embedding model for the RAG pipeline
- </ParamField>
- <ParamField path="chunker" type="ChunkerConfig">
- Chunker configuration
- </ParamField>
- <ParamField path="client" type="Client" optional>
- Client object (used to deploy a pipeline to Embedchain platform)
- </ParamField>
- <ParamField path="logger" type="logging.Logger">
- Logger object
- </ParamField>
- ## Usage
- You can create an embedchain pipeline instance using the following methods:
- ### Default setting
- ```python Code Example
- from embedchain import App
- app = App()
- ```
- ### Python Dict
- ```python Code Example
- from embedchain import App
- config_dict = {
- 'llm': {
- 'provider': 'gpt4all',
- 'config': {
- 'model': 'orca-mini-3b-gguf2-q4_0.gguf',
- 'temperature': 0.5,
- 'max_tokens': 1000,
- 'top_p': 1,
- 'stream': False
- }
- },
- 'embedder': {
- 'provider': 'gpt4all'
- }
- }
- # load llm configuration from config dict
- app = App.from_config(config=config_dict)
- ```
- ### YAML Config
- <CodeGroup>
- ```python main.py
- from embedchain import App
- # load llm configuration from config.yaml file
- app = App.from_config(config_path="config.yaml")
- ```
- ```yaml config.yaml
- llm:
- provider: gpt4all
- config:
- model: 'orca-mini-3b-gguf2-q4_0.gguf'
- temperature: 0.5
- max_tokens: 1000
- top_p: 1
- stream: false
- embedder:
- provider: gpt4all
- ```
- </CodeGroup>
- ### JSON Config
- <CodeGroup>
- ```python main.py
- from embedchain import App
- # load llm configuration from config.json file
- app = App.from_config(config_path="config.json")
- ```
- ```json config.json
- {
- "llm": {
- "provider": "gpt4all",
- "config": {
- "model": "orca-mini-3b-gguf2-q4_0.gguf",
- "temperature": 0.5,
- "max_tokens": 1000,
- "top_p": 1,
- "stream": false
- }
- },
- "embedder": {
- "provider": "gpt4all"
- }
- }
- ```
- </CodeGroup>
|