zilliz.py 7.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231
  1. import logging
  2. from typing import Any, Optional, Union
  3. from embedchain.config import ZillizDBConfig
  4. from embedchain.helpers.json_serializable import register_deserializable
  5. from embedchain.vectordb.base import BaseVectorDB
  6. try:
  7. from pymilvus import (Collection, CollectionSchema, DataType, FieldSchema,
  8. MilvusClient, connections, utility)
  9. except ImportError:
  10. raise ImportError(
  11. "Zilliz requires extra dependencies. Install with `pip install --upgrade embedchain[milvus]`"
  12. ) from None
  13. @register_deserializable
  14. class ZillizVectorDB(BaseVectorDB):
  15. """Base class for vector database."""
  16. def __init__(self, config: ZillizDBConfig = None):
  17. """Initialize the database. Save the config and client as an attribute.
  18. :param config: Database configuration class instance.
  19. :type config: ZillizDBConfig
  20. """
  21. if config is None:
  22. self.config = ZillizDBConfig()
  23. else:
  24. self.config = config
  25. self.client = MilvusClient(
  26. uri=self.config.uri,
  27. token=self.config.token,
  28. )
  29. self.connection = connections.connect(
  30. uri=self.config.uri,
  31. token=self.config.token,
  32. )
  33. super().__init__(config=self.config)
  34. def _initialize(self):
  35. """
  36. This method is needed because `embedder` attribute needs to be set externally before it can be initialized.
  37. So it's can't be done in __init__ in one step.
  38. """
  39. self._get_or_create_collection(self.config.collection_name)
  40. def _get_or_create_db(self):
  41. """Get or create the database."""
  42. return self.client
  43. def _get_or_create_collection(self, name):
  44. """
  45. Get or create a named collection.
  46. :param name: Name of the collection
  47. :type name: str
  48. """
  49. if utility.has_collection(name):
  50. logging.info(f"[ZillizDB]: found an existing collection {name}, make sure the auto-id is disabled.")
  51. self.collection = Collection(name)
  52. else:
  53. fields = [
  54. FieldSchema(name="id", dtype=DataType.VARCHAR, is_primary=True, max_length=512),
  55. FieldSchema(name="text", dtype=DataType.VARCHAR, max_length=2048),
  56. FieldSchema(name="embeddings", dtype=DataType.FLOAT_VECTOR, dim=self.embedder.vector_dimension),
  57. ]
  58. schema = CollectionSchema(fields, enable_dynamic_field=True)
  59. self.collection = Collection(name=name, schema=schema)
  60. index = {
  61. "index_type": "AUTOINDEX",
  62. "metric_type": self.config.metric_type,
  63. }
  64. self.collection.create_index("embeddings", index)
  65. return self.collection
  66. def get(self, ids: Optional[list[str]] = None, where: Optional[dict[str, any]] = None, limit: Optional[int] = None):
  67. """
  68. Get existing doc ids present in vector database
  69. :param ids: list of doc ids to check for existence
  70. :type ids: list[str]
  71. :param where: Optional. to filter data
  72. :type where: dict[str, Any]
  73. :param limit: Optional. maximum number of documents
  74. :type limit: Optional[int]
  75. :return: Existing documents.
  76. :rtype: Set[str]
  77. """
  78. if ids is None or len(ids) == 0 or self.collection.num_entities == 0:
  79. return {"ids": []}
  80. if not self.collection.is_empty:
  81. filter_ = f"id in {ids}"
  82. results = self.client.query(
  83. collection_name=self.config.collection_name, filter=filter_, output_fields=["id"]
  84. )
  85. results = [res["id"] for res in results]
  86. return {"ids": set(results)}
  87. def add(
  88. self,
  89. embeddings: list[list[float]],
  90. documents: list[str],
  91. metadatas: list[object],
  92. ids: list[str],
  93. **kwargs: Optional[dict[str, any]],
  94. ):
  95. """Add to database"""
  96. embeddings = self.embedder.embedding_fn(documents)
  97. for id, doc, metadata, embedding in zip(ids, documents, metadatas, embeddings):
  98. data = {**metadata, "id": id, "text": doc, "embeddings": embedding}
  99. self.client.insert(collection_name=self.config.collection_name, data=data, **kwargs)
  100. self.collection.load()
  101. self.collection.flush()
  102. self.client.flush(self.config.collection_name)
  103. def query(
  104. self,
  105. input_query: list[str],
  106. n_results: int,
  107. where: dict[str, any],
  108. citations: bool = False,
  109. **kwargs: Optional[dict[str, Any]],
  110. ) -> Union[list[tuple[str, dict]], list[str]]:
  111. """
  112. Query contents from vector database based on vector similarity
  113. :param input_query: list of query string
  114. :type input_query: list[str]
  115. :param n_results: no of similar documents to fetch from database
  116. :type n_results: int
  117. :param where: to filter data
  118. :type where: str
  119. :raises InvalidDimensionException: Dimensions do not match.
  120. :param citations: we use citations boolean param to return context along with the answer.
  121. :type citations: bool, default is False.
  122. :return: The content of the document that matched your query,
  123. along with url of the source and doc_id (if citations flag is true)
  124. :rtype: list[str], if citations=False, otherwise list[tuple[str, str, str]]
  125. """
  126. if self.collection.is_empty:
  127. return []
  128. if not isinstance(where, str):
  129. where = None
  130. output_fields = ["*"]
  131. input_query_vector = self.embedder.embedding_fn([input_query])
  132. query_vector = input_query_vector[0]
  133. query_result = self.client.search(
  134. collection_name=self.config.collection_name,
  135. data=[query_vector],
  136. limit=n_results,
  137. output_fields=output_fields,
  138. **kwargs,
  139. )
  140. query_result = query_result[0]
  141. contexts = []
  142. for query in query_result:
  143. data = query["entity"]
  144. score = query["distance"]
  145. context = data["text"]
  146. if "embeddings" in data:
  147. data.pop("embeddings")
  148. if citations:
  149. data["score"] = score
  150. contexts.append(tuple((context, data)))
  151. else:
  152. contexts.append(context)
  153. return contexts
  154. def count(self) -> int:
  155. """
  156. Count number of documents/chunks embedded in the database.
  157. :return: number of documents
  158. :rtype: int
  159. """
  160. return self.collection.num_entities
  161. def reset(self, collection_names: list[str] = None):
  162. """
  163. Resets the database. Deletes all embeddings irreversibly.
  164. """
  165. if self.config.collection_name:
  166. if collection_names:
  167. for collection_name in collection_names:
  168. if collection_name in self.client.list_collections():
  169. self.client.drop_collection(collection_name=collection_name)
  170. else:
  171. self.client.drop_collection(collection_name=self.config.collection_name)
  172. self._get_or_create_collection(self.config.collection_name)
  173. def set_collection_name(self, name: str):
  174. """
  175. Set the name of the collection. A collection is an isolated space for vectors.
  176. :param name: Name of the collection.
  177. :type name: str
  178. """
  179. if not isinstance(name, str):
  180. raise TypeError("Collection name must be a string")
  181. self.config.collection_name = name
  182. def delete(self, keys: Union[list, str, int]):
  183. """
  184. Delete the embeddings from DB. Zilliz only support deleting with keys.
  185. :param keys: Primary keys of the table entries to delete.
  186. :type keys: Union[list, str, int]
  187. """
  188. self.client.delete(
  189. collection_name=self.config.collection_name,
  190. pks=keys,
  191. )