123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191 |
- ---
- title: ❓ FAQs
- description: 'Collections of all the frequently asked questions'
- ---
- <AccordionGroup>
- <Accordion title="Does Embedchain support OpenAI's Assistant APIs?">
- Yes, it does. Please refer to the [OpenAI Assistant docs page](/examples/openai-assistant).
- </Accordion>
- <Accordion title="How to use MistralAI language model?">
- Use the model provided on huggingface: `mistralai/Mistral-7B-v0.1`
- <CodeGroup>
- ```python main.py
- import os
- from embedchain import App
- os.environ["HUGGINGFACE_ACCESS_TOKEN"] = "hf_your_token"
- app = App.from_config("huggingface.yaml")
- ```
- ```yaml huggingface.yaml
- llm:
- provider: huggingface
- config:
- model: 'mistralai/Mistral-7B-v0.1'
- temperature: 0.5
- max_tokens: 1000
- top_p: 0.5
- stream: false
- embedder:
- provider: huggingface
- config:
- model: 'sentence-transformers/all-mpnet-base-v2'
- ```
- </CodeGroup>
- </Accordion>
- <Accordion title="How to use ChatGPT 4 turbo model released on OpenAI DevDay?">
- Use the model `gpt-4-turbo` provided my openai.
- <CodeGroup>
- ```python main.py
- import os
- from embedchain import App
- os.environ['OPENAI_API_KEY'] = 'xxx'
- # load llm configuration from gpt4_turbo.yaml file
- app = App.from_config(config_path="gpt4_turbo.yaml")
- ```
- ```yaml gpt4_turbo.yaml
- llm:
- provider: openai
- config:
- model: 'gpt-4-turbo'
- temperature: 0.5
- max_tokens: 1000
- top_p: 1
- stream: false
- ```
- </CodeGroup>
- </Accordion>
- <Accordion title="How to use GPT-4 as the LLM model?">
- <CodeGroup>
- ```python main.py
- import os
- from embedchain import App
- os.environ['OPENAI_API_KEY'] = 'xxx'
- # load llm configuration from gpt4.yaml file
- app = App.from_config(config_path="gpt4.yaml")
- ```
- ```yaml gpt4.yaml
- llm:
- provider: openai
- config:
- model: 'gpt-4'
- temperature: 0.5
- max_tokens: 1000
- top_p: 1
- stream: false
- ```
- </CodeGroup>
- </Accordion>
- <Accordion title="I don't have OpenAI credits. How can I use some open source model?">
- <CodeGroup>
- ```python main.py
- from embedchain import App
- # load llm configuration from opensource.yaml file
- app = App.from_config(config_path="opensource.yaml")
- ```
- ```yaml opensource.yaml
- llm:
- provider: gpt4all
- config:
- model: 'orca-mini-3b-gguf2-q4_0.gguf'
- temperature: 0.5
- max_tokens: 1000
- top_p: 1
- stream: false
- embedder:
- provider: gpt4all
- config:
- model: 'all-MiniLM-L6-v2'
- ```
- </CodeGroup>
- </Accordion>
- <Accordion title="How to stream response while using OpenAI model in Embedchain?">
- You can achieve this by setting `stream` to `true` in the config file.
- <CodeGroup>
- ```yaml openai.yaml
- llm:
- provider: openai
- config:
- model: 'gpt-3.5-turbo'
- temperature: 0.5
- max_tokens: 1000
- top_p: 1
- stream: true
- ```
- ```python main.py
- import os
- from embedchain import App
- os.environ['OPENAI_API_KEY'] = 'sk-xxx'
- app = App.from_config(config_path="openai.yaml")
- app.add("https://www.forbes.com/profile/elon-musk")
- response = app.query("What is the net worth of Elon Musk?")
- # response will be streamed in stdout as it is generated.
- ```
- </CodeGroup>
- </Accordion>
- <Accordion title="How to persist data across multiple app sessions?">
- Set up the app by adding an `id` in the config file. This keeps the data for future use. You can include this `id` in the yaml config or input it directly in `config` dict.
- ```python app1.py
- import os
- from embedchain import App
- os.environ['OPENAI_API_KEY'] = 'sk-xxx'
- app1 = App.from_config(config={
- "app": {
- "config": {
- "id": "your-app-id",
- }
- }
- })
- app1.add("https://www.forbes.com/profile/elon-musk")
- response = app1.query("What is the net worth of Elon Musk?")
- ```
- ```python app2.py
- import os
- from embedchain import App
- os.environ['OPENAI_API_KEY'] = 'sk-xxx'
- app2 = App.from_config(config={
- "app": {
- "config": {
- # this will persist and load data from app1 session
- "id": "your-app-id",
- }
- }
- })
- response = app2.query("What is the net worth of Elon Musk?")
- ```
- </Accordion>
- </AccordionGroup>
- #### Still have questions?
- If docs aren't sufficient, please feel free to reach out to us using one of the following methods:
- <Snippet file="get-help.mdx" />
|