pinecone.py 1.5 KB

1234567891011121314151617181920212223242526272829303132333435363738
  1. import os
  2. from typing import Optional
  3. from embedchain.config.vectordb.base import BaseVectorDbConfig
  4. from embedchain.helpers.json_serializable import register_deserializable
  5. @register_deserializable
  6. class PineconeDBConfig(BaseVectorDbConfig):
  7. def __init__(
  8. self,
  9. collection_name: Optional[str] = None,
  10. api_key: Optional[str] = None,
  11. index_name: Optional[str] = None,
  12. dir: Optional[str] = None,
  13. vector_dimension: int = 1536,
  14. metric: Optional[str] = "cosine",
  15. pod_config: Optional[dict[str, any]] = None,
  16. serverless_config: Optional[dict[str, any]] = None,
  17. **extra_params: dict[str, any],
  18. ):
  19. self.metric = metric
  20. self.api_key = api_key
  21. self.vector_dimension = vector_dimension
  22. self.extra_params = extra_params
  23. self.index_name = index_name or f"{collection_name}-{vector_dimension}".lower().replace("_", "-")
  24. if pod_config is None and serverless_config is None:
  25. # If no config is provided, use the default pod spec config
  26. pod_environment = os.environ.get("PINECONE_ENV", "gcp-starter")
  27. self.pod_config = {"environment": pod_environment, "metadata_config": {"indexed": ["*"]}}
  28. else:
  29. self.pod_config = pod_config
  30. self.serverless_config = serverless_config
  31. if self.pod_config and self.serverless_config:
  32. raise ValueError("Only one of pod_config or serverless_config can be provided.")
  33. super().__init__(collection_name=collection_name, dir=None)