123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051 |
- import openai
- from embedchain.config import AppConfig, ChatConfig
- from embedchain.embedchain import EmbedChain
- class App(EmbedChain):
- """
- The EmbedChain app.
- Has two functions: add and query.
- adds(data_type, url): adds the data from the given URL to the vector db.
- query(query): finds answer to the given query using vector database and LLM.
- dry_run(query): test your prompt without consuming tokens.
- """
- def __init__(self, config: AppConfig = None):
- """
- :param config: AppConfig instance to load as configuration. Optional.
- """
- if config is None:
- config = AppConfig()
- super().__init__(config)
- def get_llm_model_answer(self, prompt, config: ChatConfig):
- messages = []
- if config.system_prompt:
- messages.append({"role": "system", "content": config.system_prompt})
- messages.append({"role": "user", "content": prompt})
- response = openai.ChatCompletion.create(
- model=config.model or "gpt-3.5-turbo-0613",
- messages=messages,
- temperature=config.temperature,
- max_tokens=config.max_tokens,
- top_p=config.top_p,
- stream=config.stream,
- )
- if config.stream:
- return self._stream_llm_model_response(response)
- else:
- return response["choices"][0]["message"]["content"]
- def _stream_llm_model_response(self, response):
- """
- This is a generator for streaming response from the OpenAI completions API
- """
- for line in response:
- chunk = line["choices"][0].get("delta", {}).get("content", "")
- yield chunk
|