123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325 |
- ---
- title: 🤖 Large language models (LLMs)
- ---
- ## Overview
- Embedchain comes with built-in support for various popular large language models. We handle the complexity of integrating these models for you, allowing you to easily customize your language model interactions through a user-friendly interface.
- <CardGroup cols={4}>
- <Card title="OpenAI" href="#openai"></Card>
- <Card title="Azure OpenAI" href="#azure-openai"></Card>
- <Card title="Anthropic" href="#anthropic"></Card>
- <Card title="Cohere" href="#cohere"></Card>
- <Card title="GPT4All" href="#gpt4all"></Card>
- <Card title="JinaChat" href="#jinachat"></Card>
- <Card title="Hugging Face" href="#hugging-face"></Card>
- <Card title="Llama2" href="#llama2"></Card>
- <Card title="Vertex AI" href="#vertex-ai"></Card>
- </CardGroup>
- ## OpenAI
- To use OpenAI LLM models, you have to set the `OPENAI_API_KEY` environment variable. You can obtain the OpenAI API key from the [OpenAI Platform](https://platform.openai.com/account/api-keys).
- Once you have obtained the key, you can use it like this:
- ```python
- import os
- from embedchain import Pipeline as App
- os.environ['OPENAI_API_KEY'] = 'xxx'
- app = App()
- app.add("https://en.wikipedia.org/wiki/OpenAI")
- app.query("What is OpenAI?")
- ```
- If you are looking to configure the different parameters of the LLM, you can do so by loading the app using a [yaml config](https://github.com/embedchain/embedchain/blob/main/configs/chroma.yaml) file.
- <CodeGroup>
- ```python main.py
- import os
- from embedchain import Pipeline as App
- os.environ['OPENAI_API_KEY'] = 'xxx'
- # load llm configuration from config.yaml file
- app = App.from_config(yaml_path="config.yaml")
- ```
- ```yaml config.yaml
- llm:
- provider: openai
- config:
- model: 'gpt-3.5-turbo'
- temperature: 0.5
- max_tokens: 1000
- top_p: 1
- stream: false
- ```
- </CodeGroup>
- ## Azure OpenAI
- To use Azure OpenAI model, you have to set some of the azure openai related environment variables as given in the code block below:
- <CodeGroup>
- ```python main.py
- import os
- from embedchain import Pipeline as App
- os.environ["OPENAI_API_TYPE"] = "azure"
- os.environ["OPENAI_API_BASE"] = "https://xxx.openai.azure.com/"
- os.environ["OPENAI_API_KEY"] = "xxx"
- os.environ["OPENAI_API_VERSION"] = "xxx"
- app = App.from_config(yaml_path="config.yaml")
- ```
- ```yaml config.yaml
- llm:
- provider: azure_openai
- config:
- model: gpt-35-turbo
- deployment_name: your_llm_deployment_name
- temperature: 0.5
- max_tokens: 1000
- top_p: 1
- stream: false
- embedder:
- provider: azure_openai
- config:
- model: text-embedding-ada-002
- deployment_name: you_embedding_model_deployment_name
- ```
- </CodeGroup>
- You can find the list of models and deployment name on the [Azure OpenAI Platform](https://oai.azure.com/portal).
- ## Anthropic
- To use anthropic's model, please set the `ANTHROPIC_API_KEY` which you find on their [Account Settings Page](https://console.anthropic.com/account/keys).
- <CodeGroup>
- ```python main.py
- import os
- from embedchain import Pipeline as App
- os.environ["ANTHROPIC_API_KEY"] = "xxx"
- # load llm configuration from config.yaml file
- app = App.from_config(yaml_path="config.yaml")
- ```
- ```yaml config.yaml
- llm:
- provider: anthropic
- config:
- model: 'claude-instant-1'
- temperature: 0.5
- max_tokens: 1000
- top_p: 1
- stream: false
- ```
- </CodeGroup>
- ## Cohere
- Install related dependencies using the following command:
- ```bash
- pip install --upgrade 'embedchain[cohere]'
- ```
- Set the `COHERE_API_KEY` as environment variable which you can find on their [Account settings page](https://dashboard.cohere.com/api-keys).
- Once you have the API key, you are all set to use it with Embedchain.
- <CodeGroup>
- ```python main.py
- import os
- from embedchain import Pipeline as App
- os.environ["COHERE_API_KEY"] = "xxx"
- # load llm configuration from config.yaml file
- app = App.from_config(yaml_path="config.yaml")
- ```
- ```yaml config.yaml
- llm:
- provider: cohere
- config:
- model: large
- temperature: 0.5
- max_tokens: 1000
- top_p: 1
- ```
- </CodeGroup>
- ## GPT4ALL
- Install related dependencies using the following command:
- ```bash
- pip install --upgrade 'embedchain[opensource]'
- ```
- GPT4all is a free-to-use, locally running, privacy-aware chatbot. No GPU or internet required. You can use this with Embedchain using the following code:
- <CodeGroup>
- ```python main.py
- from embedchain import Pipeline as App
- # load llm configuration from config.yaml file
- app = App.from_config(yaml_path="config.yaml")
- ```
- ```yaml config.yaml
- llm:
- provider: gpt4all
- config:
- model: 'orca-mini-3b-gguf2-q4_0.gguf'
- temperature: 0.5
- max_tokens: 1000
- top_p: 1
- stream: false
- embedder:
- provider: gpt4all
- ```
- </CodeGroup>
- ## JinaChat
- First, set `JINACHAT_API_KEY` in environment variable which you can obtain from [their platform](https://chat.jina.ai/api).
- Once you have the key, load the app using the config yaml file:
- <CodeGroup>
- ```python main.py
- import os
- from embedchain import Pipeline as App
- os.environ["JINACHAT_API_KEY"] = "xxx"
- # load llm configuration from config.yaml file
- app = App.from_config(yaml_path="config.yaml")
- ```
- ```yaml config.yaml
- llm:
- provider: jina
- config:
- temperature: 0.5
- max_tokens: 1000
- top_p: 1
- stream: false
- ```
- </CodeGroup>
- ## Hugging Face
- Install related dependencies using the following command:
- ```bash
- pip install --upgrade 'embedchain[huggingface_hub]'
- ```
- First, set `HUGGINGFACE_ACCESS_TOKEN` in environment variable which you can obtain from [their platform](https://huggingface.co/settings/tokens).
- Once you have the token, load the app using the config yaml file:
- <CodeGroup>
- ```python main.py
- import os
- from embedchain import Pipeline as App
- os.environ["HUGGINGFACE_ACCESS_TOKEN"] = "xxx"
- # load llm configuration from config.yaml file
- app = App.from_config(yaml_path="config.yaml")
- ```
- ```yaml config.yaml
- llm:
- provider: huggingface
- config:
- model: 'google/flan-t5-xxl'
- temperature: 0.5
- max_tokens: 1000
- top_p: 0.5
- stream: false
- ```
- </CodeGroup>
- ## Llama2
- Llama2 is integrated through [Replicate](https://replicate.com/). Set `REPLICATE_API_TOKEN` in environment variable which you can obtain from [their platform](https://replicate.com/account/api-tokens).
- Once you have the token, load the app using the config yaml file:
- <CodeGroup>
- ```python main.py
- import os
- from embedchain import Pipeline as App
- os.environ["REPLICATE_API_TOKEN"] = "xxx"
- # load llm configuration from config.yaml file
- app = App.from_config(yaml_path="config.yaml")
- ```
- ```yaml config.yaml
- llm:
- provider: llama2
- config:
- model: 'a16z-infra/llama13b-v2-chat:df7690f1994d94e96ad9d568eac121aecf50684a0b0963b25a41cc40061269e5'
- temperature: 0.5
- max_tokens: 1000
- top_p: 0.5
- stream: false
- ```
- </CodeGroup>
- ## Vertex AI
- Setup Google Cloud Platform application credentials by following the instruction on [GCP](https://cloud.google.com/docs/authentication/external/set-up-adc). Once setup is done, use the following code to create an app using VertexAI as provider:
- <CodeGroup>
- ```python main.py
- from embedchain import Pipeline as App
- # load llm configuration from config.yaml file
- app = App.from_config(yaml_path="config.yaml")
- ```
- ```yaml config.yaml
- llm:
- provider: vertexai
- config:
- model: 'chat-bison'
- temperature: 0.5
- top_p: 0.5
- ```
- </CodeGroup>
- <br/ >
- <Snippet file="missing-llm-tip.mdx" />
|