Sen descrición

cachho fc633dadeb feat: poe bot (#492) %!s(int64=2) %!d(string=hai) anos
.github aafb334916 fix: improve CTA of book meeting (#496) %!s(int64=2) %!d(string=hai) anos
docs fc633dadeb feat: poe bot (#492) %!s(int64=2) %!d(string=hai) anos
embedchain fc633dadeb feat: poe bot (#492) %!s(int64=2) %!d(string=hai) anos
examples f29443a0fc [feat] Add support for creating whatsapp bot using embedchain (#458) %!s(int64=2) %!d(string=hai) anos
notebooks 96143ac496 docs: app config instead of init config (#308) %!s(int64=2) %!d(string=hai) anos
tests 70df373807 [feat]: add support for sending anonymous user_id in telemetry (#491) %!s(int64=2) %!d(string=hai) anos
.env.example ac68986404 Add project tools and contributing guidelines (#281) %!s(int64=2) %!d(string=hai) anos
.gitignore c595003481 docs: setup docs for embedchain (#287) %!s(int64=2) %!d(string=hai) anos
.pre-commit-config.yaml ac68986404 Add project tools and contributing guidelines (#281) %!s(int64=2) %!d(string=hai) anos
CITATION.cff 736b645fea Add citation (#137) %!s(int64=2) %!d(string=hai) anos
CONTRIBUTING.md c595003481 docs: setup docs for embedchain (#287) %!s(int64=2) %!d(string=hai) anos
LICENSE 65d1ff37e8 Create LICENSE %!s(int64=2) %!d(string=hai) anos
Makefile 05a4eef6ae chores: run lint and format (#284) %!s(int64=2) %!d(string=hai) anos
README.md aafb334916 fix: improve CTA of book meeting (#496) %!s(int64=2) %!d(string=hai) anos
poetry.toml ac68986404 Add project tools and contributing guidelines (#281) %!s(int64=2) %!d(string=hai) anos
pyproject.toml fc633dadeb feat: poe bot (#492) %!s(int64=2) %!d(string=hai) anos

README.md

embedchain

PyPI Discord Twitter Substack Open in Colab

Embedchain is a framework to easily create LLM powered bots over any dataset. If you want a javascript version, check out embedchain-js

🤝 Schedule a 1-on-1 Session

Book a 1-on-1 Session with Taranjeet, the founder, to discuss any issues, provide feedback, or explore how we can improve Embedchain for you.

🔧 Quick install

pip install embedchain

🔍 Demo

Try out embedchain in your browser:

Open in Colab

📖 Documentation

The documentation for embedchain can be found at docs.embedchain.ai.

💻 Usage

Embedchain empowers you to create chatbot models similar to ChatGPT, using your own evolving dataset.

Data Types Supported

  • Youtube video
  • PDF file
  • Web page
  • Sitemap
  • Doc file
  • Code documentation website loader
  • Notion

Queries

For example, you can use Embedchain to create an Elon Musk bot using the following code:

import os
from embedchain import App

# Create a bot instance
os.environ["OPENAI_API_KEY"] = "YOUR API KEY"
elon_bot = App()

# Embed online resources
elon_bot.add("https://en.wikipedia.org/wiki/Elon_Musk")
elon_bot.add("https://tesla.com/elon-musk")
elon_bot.add("https://www.youtube.com/watch?v=MxZpaJK74Y4")

# Query the bot
elon_bot.query("How many companies does Elon Musk run?")
# Answer: Elon Musk runs four companies: Tesla, SpaceX, Neuralink, and The Boring Company

🤝 Contributing

Contributions are welcome! Please check out the issues on the repository, and feel free to open a pull request. For more information, please see the contributing guidelines.

For more refrence, please go through Development Guide and Documentation Guide.

Citation

If you utilize this repository, please consider citing it with:

@misc{embedchain,
  author = {Taranjeet Singh},
  title = {Embedchain: Framework to easily create LLM powered bots over any dataset},
  year = {2023},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/embedchain/embedchain}},
}