12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667 |
- import importlib
- import logging
- import os
- from collections.abc import Generator
- from typing import Any, Optional, Union
- import google.generativeai as genai
- from embedchain.config import BaseLlmConfig
- from embedchain.helpers.json_serializable import register_deserializable
- from embedchain.llm.base import BaseLlm
- logger = logging.getLogger(__name__)
- @register_deserializable
- class GoogleLlm(BaseLlm):
- def __init__(self, config: Optional[BaseLlmConfig] = None):
- if "GOOGLE_API_KEY" not in os.environ:
- raise ValueError("Please set the GOOGLE_API_KEY environment variable.")
- try:
- importlib.import_module("google.generativeai")
- except ModuleNotFoundError:
- raise ModuleNotFoundError(
- "The required dependencies for GoogleLlm are not installed."
- 'Please install with `pip install --upgrade "embedchain[google]"`'
- ) from None
- super().__init__(config)
- genai.configure(api_key=os.environ["GOOGLE_API_KEY"])
- def get_llm_model_answer(self, prompt):
- if self.config.system_prompt:
- raise ValueError("GoogleLlm does not support `system_prompt`")
- response = self._get_answer(prompt)
- return response
- def _get_answer(self, prompt: str) -> Union[str, Generator[Any, Any, None]]:
- model_name = self.config.model or "gemini-pro"
- logger.info(f"Using Google LLM model: {model_name}")
- model = genai.GenerativeModel(model_name=model_name)
- generation_config_params = {
- "candidate_count": 1,
- "max_output_tokens": self.config.max_tokens,
- "temperature": self.config.temperature or 0.5,
- }
- if 0.0 <= self.config.top_p <= 1.0:
- generation_config_params["top_p"] = self.config.top_p
- else:
- raise ValueError("`top_p` must be > 0.0 and < 1.0")
- generation_config = genai.types.GenerationConfig(**generation_config_params)
- response = model.generate_content(
- prompt,
- generation_config=generation_config,
- stream=self.config.stream,
- )
- if self.config.stream:
- # TODO: Implement streaming
- response.resolve()
- return response.text
- else:
- return response.text
|