# -*- coding: utf-8 -*- # @Author: privacy # @Date: 2024-06-27 09:33:01 # @Last Modified by: privacy # @Last Modified time: 2024-06-27 14:44:43 import torch import numpy as np import pandas as pd from sklearn.metrics.pairwise import cosine_similarity from transformers import AutoTokenizer, AutoModel class Matcher: def __init__(self): # Load model directly # # # 加载预训练的text2vec模型和分词器 self.tokenizer = AutoTokenizer.from_pretrained("GanymedeNil/text2vec-base-chinese") self.model = AutoModel.from_pretrained("GanymedeNil/text2vec-base-chinese") def TopK1(self, title: str, keywords: list, query_embedding, option_embeddings: list) -> pd.Series: # 计算相似度 similarities = [cosine_similarity([query_embedding], [embedding])[0][0] for embedding in option_embeddings] # 找到最相近的关键词 most_similar_keyword = keywords[similarities.index(max(similarities))] print(f"和 {title} 最相近的关键词是:{most_similar_keyword}") return pd.Series([most_similar_keyword, max(similarities)]) def get_embedding(self, text: str): encoded_input = tokenizer(text, return_tensors='pt') with torch.no_grad(): output = model(**encoded_input) text_embedding = np.mean(output.last_hidden_state.mean(dim=1).numpy(), axis=0) return text_embedding def get_embeddings(self, text_list: list) -> list: text_embeddings = [] for text in text_list: encoded_input = tokenizer(text, return_tensors='pt') with torch.no_grad(): output = model(**encoded_input) text_embeddings.append(np.mean(output.last_hidden_state.mean(dim=1).numpy(), axis=0)) return text_embeddings if __name__ == '__main__': matcher = Matcher() 招标因素 = ['投标人名称', '投标文件封面、投标函签字盖章', '投标文件格式', '报价唯一', '营业执照', '安全生产许可证', '资质条件', '财务要求', '业绩要求', '人员要求', '信誉要求', '不得存在的情形', '其他要求', '投标报价', '投标内容', '工期', '工程质量', '投标有效期', '投标保证金', '权利义务', '己标价工程量清单', '技术标准和要求', '其他', '以往同类项目业绩、经验', '信用评价', '财务状况', '投标报价合理性', '施工组织设计', '无机磨石品牌及质量', '无机磨石地坪的施工工艺及质量控制', '投标关键技术、设备、部件及材料的来源及供应可靠性', '施工安全和文明施工', '组织机构及施工管理人员', '价格得分'] df = pd.read_json("投标文件-修改版9-5-1-1.json") del df['bbox'] keyword_embeddings = matcher.get_embeddings(招标因素) result = df['text'].apply(lambda x: matcher.TopK1(x, 招标因素, matcher.get_embedding(x), keyword_embeddings)) result.columns = ['因素', '相似度'] df['因素'] = result['因素'] df['相似度'] = result['相似度'] max_sim_idx = df.groupby('因素')['相似度'].idxmax() max_sim_rows = df.loc[max_sim_idx] max_sim_rows.to_json('相似度.json', orient='records', lines=True, force_ascii=False)