# -*- coding: utf-8 -*- # @Author: privacy # @Date: 2024-08-30 11:17:21 # @Last Modified by: privacy # @Last Modified time: 2024-09-03 10:23:35 from typing import Callable, Union, List, Tuple, Dict, Optional import pandas as pd from tqdm import tqdm from celery_tasks.matcher import Matcher def pagination_texts(contents: List[dict], start: int, end: int = None) -> Tuple[Dict, List[str]]: """ """ if end is None: end = start + 1 results = {} texts = [] pages = set(range(start, end)) for page in contents: if page['page_number'] in pages: results.get(int(page['page_number']), {}).update( { page['index']: { 'page_number': page['page_number'], 'index': page['index'], 'text': page['text'], 'lines': page['lines'], 'is_table_name': page['is_table_name'] } }) texts.append(page['text']) return results, texts def similarity_filter(data: List[dict], expect_similarity: float = None): """ """ def f(x: dict): return x['相似度'] > (expect_similarity if isinstance(expect_similarity, float) else 0.5) return filter(f, data) def extract_from_texts(text: List[str], extractor: Union[Callable[[str, float], List[str]], Callable[[str], List[str]]], instances: List[str], similarity: float = None) -> Tuple[List[str], List[int]]: texts = ','.join(filter(lambda x: x != '', ''.join([''.join(filter(lambda x: x != ' ', list(i.strip()))) for i in text]).split( '。'))).split(',') sims = similar_match([{'text': i} for i in texts], instances, 'text') s_texts = [i['text'] for i in sims] similarities = [i['相似度'] for i in sims] if similarity is None: return list(filter(lambda x: x != [], [extractor(i) for i in s_texts])), similarities else: return list(filter(lambda x: x != [], [extractor(i, similarity) for i in s_texts])), similarities def similar_match(data: List[dict], instances: List[str], key: str) -> {}: """ """ matcher = Matcher() df = pd.DataFrame(data) keyword_embeddings = matcher.get_embeddings(instances) tqdm.pandas(desc='标题相似度匹配') result = df[key].apply(lambda x: matcher.TopK1(x, instances, matcher.get_embedding(x), keyword_embeddings)) result.columns = ['因素', '相似度'] df['因素'] = result['因素'] df['相似度'] = result['相似度'] max_sim_idx = df.groupby('因素')['相似度'].idxmax() max_sim_rows = df.loc[max_sim_idx] return max_sim_rows.to_dict(orient='records') def get_instance(title_instances: List[str], content_instances: List[str], extractor: Union[Callable[[str, float], List[str]], Callable[[str], List[str]]], titles_list: Optional[list] = None, texts_list: Optional[list] = None, pdf_path: Optional[str] = None, page_bias: int = 1, similarity: float = None): """ Args: title_instances content_instances file_path extractor page_bias similarity Returns: results """ title_sims = similarity_filter( similar_match( titles_list, title_instances, key='title' ), similarity ) results = [] for i in title_sims: current_page = i['page_number'] _, text = pagination_texts(texts_list, current_page, current_page + page_bias) results.extend(extract_from_texts(text, extractor, content_instances)) return results