matcher.py 3.3 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374
  1. # -*- coding: utf-8 -*-
  2. # @Author: privacy
  3. # @Date: 2024-06-27 09:33:01
  4. # @Last Modified by: privacy
  5. # @Last Modified time: 2024-08-23 12:10:09
  6. import os
  7. os.environ['TRANSFORMERS_OFFLINE'] = '1'
  8. os.environ['HF_DATASETS_OFFLINE'] = '1'
  9. import torch
  10. import numpy as np
  11. import pandas as pd
  12. from sklearn.metrics.pairwise import cosine_similarity
  13. from transformers import AutoTokenizer, AutoModel
  14. class Matcher:
  15. def __init__(self):
  16. # Load model directly
  17. # # # 加载预训练的text2vec模型和分词器
  18. self.tokenizer = AutoTokenizer.from_pretrained("GanymedeNil/text2vec-base-chinese")
  19. self.model = AutoModel.from_pretrained("GanymedeNil/text2vec-base-chinese")
  20. def TopK1(self, title: str, keywords: list, query_embedding, option_embeddings: list) -> pd.Series:
  21. # 计算相似度
  22. similarities = [cosine_similarity([query_embedding], [embedding])[0][0] for embedding in option_embeddings]
  23. # 找到最相近的关键词
  24. most_similar_keyword = keywords[similarities.index(max(similarities))]
  25. print(f"和 {title} 最相近的关键词是:{most_similar_keyword}")
  26. return pd.Series([most_similar_keyword, max(similarities)])
  27. def get_embedding(self, text: str):
  28. encoded_input = self.tokenizer(text, return_tensors='pt')
  29. with torch.no_grad():
  30. output = self.model(**encoded_input)
  31. text_embedding = np.mean(output.last_hidden_state.mean(dim=1).numpy(), axis=0)
  32. return text_embedding
  33. def get_embeddings(self, text_list: list) -> list:
  34. text_embeddings = []
  35. for text in text_list:
  36. encoded_input = self.tokenizer(text, return_tensors='pt')
  37. with torch.no_grad():
  38. output = self.model(**encoded_input)
  39. text_embeddings.append(np.mean(output.last_hidden_state.mean(dim=1).numpy(), axis=0))
  40. return text_embeddings
  41. if __name__ == '__main__':
  42. matcher = Matcher()
  43. 招标因素 = ['投标人名称', '投标文件封面、投标函签字盖章', '投标文件格式', '报价唯一', '营业执照', '安全生产许可证', '资质条件', '财务要求', '业绩要求', '人员要求', '信誉要求', '不得存在的情形', '其他要求', '投标报价', '投标内容', '工期', '工程质量', '投标有效期', '投标保证金', '权利义务', '己标价工程量清单', '技术标准和要求', '其他', '以往同类项目业绩、经验', '信用评价', '财务状况', '投标报价合理性', '施工组织设计', '无机磨石品牌及质量', '无机磨石地坪的施工工艺及质量控制', '投标关键技术、设备、部件及材料的来源及供应可靠性', '施工安全和文明施工', '组织机构及施工管理人员', '价格得分']
  44. df = pd.read_json("投标文件-修改版9-5-1-1.json")
  45. del df['bbox']
  46. keyword_embeddings = matcher.get_embeddings(招标因素)
  47. result = df['text'].apply(lambda x: matcher.TopK1(x, 招标因素, matcher.get_embedding(x), keyword_embeddings))
  48. result.columns = ['因素', '相似度']
  49. df['因素'] = result['因素']
  50. df['相似度'] = result['相似度']
  51. max_sim_idx = df.groupby('因素')['相似度'].idxmax()
  52. max_sim_rows = df.loc[max_sim_idx]
  53. max_sim_rows.to_json('相似度.json', orient='records', lines=True, force_ascii=False)