extract_financial_report.py 5.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156
  1. # -*- coding: utf-8 -*-
  2. # @Author: privacy
  3. # @Date: 2024-06-11 13:43:14
  4. # @Last Modified by: privacy
  5. # @Last Modified time: 2024-09-29 16:33:17
  6. import os
  7. import re
  8. from tqdm import tqdm
  9. from celery_tasks.ocr import find_current_row
  10. from celery_tasks.commonprocess import pic_ocr
  11. from celery_tasks.instance_locate import get_instances_by_title
  12. def is_price(word: str) -> bool:
  13. pattern = (
  14. r"(?:\b(?:[BS]/\.|R(?:D?\$|p))|\b(?:[TN]T|[CJZ])\$|Дин\.|\b(?:Bs|Ft|Gs"
  15. r"|K[Mč]|Lek|B[Zr]|k[nr]|[PQLSR]|лв|ден|RM|MT|lei|zł|USD|GBP|EUR|JPY"
  16. r"|CHF|SEK|DKK|NOK|SGD|HKD|AUD|TWD|NZD|CNY|KRW|INR|CAD|VEF|EGP|THB|IDR"
  17. r"|PKR|MYR|PHP|MXN|VND|CZK|HUF|PLN|TRY|ZAR|ILS|ARS|CLP|BRL|RUB|QAR|AED"
  18. r"|COP|PEN|CNH|KWD|SAR)|\$[Ub]|"
  19. r"[^\w\s])\s?(?:\d{1,3}(?:,\d{3})*|\d+)(?:\.\d{1,2})?(?!\.?\d)"
  20. )
  21. char_set = set('1234567890,.')
  22. if re.fullmatch(pattern, word):
  23. return True
  24. elif sum([0 if s in char_set else 1 for s in word]) == 0:
  25. return True
  26. else:
  27. return False
  28. def extract_financial_report(title_list: list, table_list: list, image_list: list, year: int) -> list:
  29. """
  30. 财报解析
  31. Args:
  32. path:
  33. title_list: 标题列表
  34. table_list: 表格列表
  35. image_list: 图片列表
  36. year: 年份
  37. Returns:
  38. results
  39. """
  40. instances = get_instances_by_title(
  41. title_list=title_list,
  42. table_list=table_list,
  43. image_list=image_list,
  44. instances=[
  45. '财务状况',
  46. '近年财务状况表',
  47. '{}年审计报告'.format(year - 1),
  48. '{}年审计报告'.format(year - 2)
  49. ]
  50. )
  51. results = []
  52. for item in instances:
  53. if item['page_number'] >= item['end_page']:
  54. print('Wrong titles extracted at {}'.format(item['title']))
  55. elif item['tables']:
  56. table_name = [t['table_name'] for t in item['tables']]
  57. profits = []
  58. for table in item['tables']:
  59. profit = []
  60. for row in table['table']:
  61. if list(filter(lambda x: re.match(r'.*利润.*', x) is not None, row)):
  62. profit.append(row)
  63. profits.append(profit)
  64. results.append({
  65. 'title': table_name,
  66. 'result': profits,
  67. 'pages': [i['page_numbers'] for i in item['tables']],
  68. 'chapter': item['title']
  69. })
  70. elif item.get('images'):
  71. print('未找到表格 图片识别中')
  72. print(item.get('images'))
  73. pages = [
  74. img['page_number'] for img in item.get('images')
  75. ]
  76. ocr_results = [
  77. pic_ocr.apply_async(kwargs={'image_path': img['image_name']}).get(timeout=30)['rawjson']['ret']
  78. for img in item.get('images')
  79. ]
  80. candidate = []
  81. rows = []
  82. print('结果分析中')
  83. for i, ret in tqdm(enumerate(ocr_results)):
  84. for res in ret:
  85. if re.match(r'.*(净利润).*', res['word']) is not None:
  86. top = res['rect']['top']
  87. bottom = res['rect']['top'] - res['rect']['height']
  88. candidate.append(
  89. {
  90. 'page': pages[i],
  91. 'text': res['word'],
  92. 'top': top,
  93. 'bottom': bottom,
  94. }
  95. )
  96. rows.append(find_current_row(ret, top, bottom))
  97. for it in candidate:
  98. print('定位:\t{}\t定位词:\t{}'.format(it['page'], it['text']))
  99. for i, row in enumerate(rows):
  100. title = []
  101. profits = []
  102. for w in row:
  103. if is_price(w['word']):
  104. profits.append(w['word'])
  105. else:
  106. title.append(w['word'])
  107. if title and profits:
  108. results.append({
  109. 'chapter': item['title'],
  110. 'page': candidate[i]['page'],
  111. 'title': title,
  112. 'result': profits
  113. })
  114. return results
  115. if __name__ == '__main__':
  116. import json
  117. import datetime
  118. from settings import title_n_path, table_list_path, image_path
  119. with open(title_n_path, 'r', encoding='utf-8') as fp:
  120. title_list = json.load(fp)
  121. with open(table_list_path, 'r', encoding='utf-8') as fp:
  122. table_list = json.load(fp)
  123. with open(image_path, 'r', encoding='utf-8') as fp:
  124. image_list = json.load(fp)
  125. y = datetime.datetime.now().year
  126. print(
  127. extract_financial_report(
  128. title_list=title_list,
  129. table_list=table_list,
  130. image_list=image_list,
  131. year=2022
  132. )
  133. )