resume_parse.py 58 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382
  1. #!/usr/bin/env python
  2. # coding: utf-8
  3. import os
  4. import sys
  5. import re
  6. import subprocess
  7. import asyncio
  8. from pprint import pprint
  9. import logging
  10. logging.basicConfig(format='%(asctime)s: %(name)s: %(levelname)s: %(filename)s: %(funcName)s: %(lineno)d: %(message)s', level=logging.WARNING)
  11. import json
  12. import pandas as pd
  13. from docx import Document
  14. from docx.shared import Inches
  15. from pdfminer.high_level import extract_pages
  16. from pdfminer.layout import LTTextContainer, LTChar, LTLine, LAParams, LTTextBox, LTFigure, LTImage, LTText, LTAnno, LTTextLine, LTTextLineHorizontal
  17. from pdfminer.pdfdocument import PDFDocument
  18. from pdfminer.pdfpage import PDFPage
  19. from pdfminer.pdfparser import PDFParser
  20. from pdfminer.converter import PDFPageAggregator
  21. from pdfminer.pdfinterp import PDFResourceManager, PDFPageInterpreter
  22. import pdfplumber
  23. from paddlenlp import Taskflow
  24. from rich.console import Console
  25. console = Console()
  26. import uvicorn
  27. from fastapi import FastAPI, File, UploadFile
  28. app = FastAPI()
  29. ner = Taskflow("ner", mode='fast')
  30. ner_tag = Taskflow("ner")
  31. base_info_ie = Taskflow('information_extraction', schema=["姓名","性别","婚姻状况","电子邮箱","政治面貌","手机号码","籍贯",
  32. "出生日期","现任职务","参加工作时间","英语水平","计算机水平",
  33. "工作年限","当前单位","所在城市","职业资格"])
  34. prize_ie = Taskflow('information_extraction', schema=["时间", "奖项"])
  35. cet_ie = Taskflow('information_extraction', schema=["时间","证书"])
  36. pro_ie = Taskflow("information_extraction", schema=["时间","项目名称","机构","职位"], task_path='./model_100')
  37. global block, block_rev
  38. with open("resources/SegmentName.json", "r", encoding="utf-8") as fp:
  39. block = json.load(fp)
  40. block_rev = {1:"基本信息", 2:"求职意向", 3:"教育经历", 4:"工作经历", 5:"项目经历", 6:"专业技能", 7:"自我评价", 8:"兴趣爱好", 9:"语言能力", 10:"证书", 11:"获奖情况", 12:"培训经历", 13:"家庭成员", "other":"其他"}
  41. # 基本信息(已完成)
  42. def get_base_info_old(lines):
  43. logging.info(lines)
  44. schema = {
  45. '姓名': None,
  46. }
  47. for line in [' '.join(' '.join(lines).split('\n'))]:
  48. line = line.replace(r'[ ]{5,}','\n')
  49. w = re.sub(r'[\W]+(\w[::])[\W]{0,}\w', r'\1', line)
  50. for i in w.split():
  51. if ':' in i:
  52. try:
  53. key, val = i.split(':')
  54. schema[key] = val
  55. except Exception as e:
  56. logging.error(e)
  57. if not schema.get('姓名'):
  58. schema['姓名'] = re.search(r'[姓名::]{3,}(\w{2,4})', w).group(1) if re.search(r'[姓名::]{3,}(\w{2,4})', w) else None
  59. if not schema.get('姓名'):
  60. for word, tag in ner_tag(w):
  61. if tag == "人物类_实体":
  62. schema['姓名'] = word
  63. if not schema.get('性别'):
  64. schema['性别'] = re.search(r'[男女]', w).group() if re.search(r'[男女]', w) else None
  65. if not schema.get('婚姻状况'):
  66. schema['婚姻状况'] = re.search(r'[已未]婚', w).group() if re.search(r'[已未]婚', w) else None
  67. if not schema.get('电子邮箱'):
  68. schema['电子邮箱'] = re.search(r'([.\w]+@[.\w]+)', w).group() if re.search(r'([.\w]+@[.\w]+)', w) else None
  69. if not schema.get('政治面貌'):
  70. schema['政治面貌'] = re.search(r'[预备中共党团员群众无派人士]{2,6}', w).group() if re.search(r'[预备中共党团员群众无派人士]{2,6}', w) else None
  71. if not schema.get('手机号码'):
  72. schema['手机号码'] = re.search(r'\W(1[\d]{10})\W', w).group(1) if re.search(r'\W(1[\d]{10})\W', w) else None
  73. # if not schema.get('籍贯'):
  74. # schema['籍贯'] = re.search(r'[籍贯::]{3,}(\w{2,5})', w).group(1) if re.search(r'[籍贯::]{3,}(\w{2,})', w) else None
  75. # if not schema.get('出生年月'):
  76. # schema['出生年月'] = re.search(r'\d{4}[./年\-]\d{1,2}[月]', w).group() if re.search(r'\d{4}[./年\-]\d{1,2}[月]', w) else None
  77. # if not schema.get('当前职位'):
  78. # schema['当前职位'] = re.search(r'[当前职位: ]{3,}(\w)+', w).group() if re.search(r'[当前职位: ]{3,}(\w)+', w) else None
  79. # if not schema.get('参加工作时间'):
  80. # schema['参加工作时间'] = re.search(r'[参加工作时间:]{3,}(\d{4}[./年\-]\d{1,2}[月])', w).group(1) if re.search(r'[参加工作时间:]{3,}(\d{4}[./年\-]\d{1,2}[月])', w) else None
  81. return {key:value for key, value in schema.items() if value}
  82. # 基本信息(OIE已完成)
  83. def get_base_info(lines):
  84. if not lines:
  85. return
  86. logging.info(lines)
  87. data = " ".join(lines)
  88. rst = base_info_ie(data)[0]
  89. return {key:rst[key][0]["text"] for key in rst.keys()}
  90. # 求职意向(已完成)
  91. def get_job_intention(lines):
  92. logging.info(lines)
  93. schema = {}
  94. for line in lines:
  95. regex = re.compile(r'\W{0,3}[::]\s+')
  96. line = regex.sub(':', line)
  97. for i in line.split():
  98. if ":" in i:
  99. try:
  100. key, val = i.split(":")
  101. schema[key] = val
  102. except Exception as e:
  103. logging.error(e)
  104. return schema
  105. # 教育经历 (已停用)
  106. # ner + 分词 (判断学校,时间,学历) 专业需要单独处理。
  107. def get_edu_list_old(lines):
  108. logging.info(lines)
  109. job_list = []
  110. job_dict = {'edu_time_beg':'', 'edu_time_end':'', 'edu_name':'','edu_leval':'','edu_domain':'', 'edu_statue':0}
  111. re_txt = '\d{4,4}.\d{1,2}.?\040{0,2}[\-–至-\—~]\040{0,2}\d{4,4}.\d{1,2}[月]?|\d+\.\d+\-至今|\d+年\d+月\-\d+年\d+月|\d+年\d+月\-\~|\d+年\d+月[\-\~]至今|\d+-\d+\040{0,2}[\~至]\040{0,2}\d+-\d+|\d+-\d+\~|\d+-\d+\~至今|\d+-\d+\040{0,2}至今|^\d{4,4}.\d{1,2}|19\d{2,2}.|20\d{2,2}.'
  112. re_txt_1 = '\d{4,4}.\d{1,2}.?\040{0,2}[\-–至-\—~]\040{0,2}\d{4,4}.\d{1,2}[月]?|\d+\.\d+\-至今|\d+年\d+月\-\d+年\d+月|\d+年\d+月\-\~|\d+年\d+月[\-\~]至今|\d+-\d+\040{0,2}[\~至]\040{0,2}\d+-\d+|\d+-\d+\~|\d+-\d+\~至今|\d+-\d+\040{0,2}至今'
  113. nums = []
  114. for i in range(len(lines)):
  115. if re.findall(re_txt, lines[i]):
  116. nums.append(i)
  117. nums.append(len(lines))
  118. edu_level = {'本科':18, "大专":17, "博士研究生":20, "学士":18, "博士":20, "硕士":19, "研究生":19, "博后":21, '博士后':21}
  119. year_dict = {18:4, 17:3,20:3,19:3,21:2}
  120. edu_dict = {18:'本科', 17:'大专',20:'博士研究生',19:'硕士',21:'博士后'}
  121. edu_list = []
  122. for i in range(1, len(nums[:])):
  123. job_dict = {'edu_time_beg':'', 'edu_time_end':'', 'edu_name':'','edu_leval':'','edu_domain':''}
  124. data_list = lines[nums[i-1]:nums[i]]
  125. if len(data_list) > 1 and data_list[1] and data_list[1][-1] == '|' and data_list[0][-1] != '|':
  126. data_list[0] = data_list[0] + data_list[1]
  127. data_list[1] = ''
  128. if len(data_list) > 2 and data_list[2] and data_list[2][-1] == '|' and data_list[0][-1] != '|' and '|' in str(data_list[0]) and data_list[1] and data_list[1][-1] != '|':
  129. data_list[0] = data_list[0] + data_list[1] + data_list[2]
  130. data_list[1] = ''
  131. data_list[2] = ''
  132. if '' in data_list:
  133. data_list.remove('')
  134. data_line = ' '.join(data_list)
  135. data_line = re.sub('[\|]', ' ', data_line)
  136. data_line = re.sub('-{3,}', '', data_line)
  137. ner_data = ner(''.join(data_list[:2]))
  138. org = ''
  139. time_list = []
  140. for jj in range(1, len(ner_data)):
  141. if ner_data[jj][1] == ner_data[jj-1][1]:
  142. ner_data[jj] = list(ner_data[jj])
  143. ner_data[jj][0] = ner_data[jj-1][0] + ner_data[jj][0]
  144. ner_data[jj-1] = ('','')
  145. for _ in ner_data:
  146. if _[1] == 'ORG' and not org:
  147. org = _[0].strip()
  148. elif _[1] == 'TIME' and len(_[1]) >= 4:
  149. time_list.append(_[0])
  150. #TIME
  151. # print(data_line)
  152. _list_data = re.split('\040+',data_line)
  153. top_level = 18
  154. remove_list = []
  155. logging.info(_list_data)
  156. logging.info(time_list)
  157. for ii in range(len(_list_data)):
  158. for t in time_list:
  159. if t in _list_data[ii]:
  160. _list_data[ii] = ''
  161. break
  162. for i in range(len(_list_data)):
  163. #if org in _list_data[i]:
  164. # _list_data[i] = ''
  165. if re.findall('^\d{4,4}', _list_data[i]):
  166. _list_data[i] = ''
  167. _data = re.findall('本科|学士|硕士|博士研究生|博士后|博后|博士|研究生|大专', _list_data[i])
  168. if not _data:
  169. continue
  170. top_level = edu_level[_data[0]]
  171. _list_data[i] = ''
  172. break
  173. #remove_list.append(i)
  174. logging.info(_list_data)
  175. job_time = re.findall(re_txt_1, data_list[0])
  176. if job_time:
  177. job_dict['edu_time'] = job_time[0]
  178. else:
  179. job_dict['edu_time'] = ''
  180. _nums = re.findall('\d+', job_dict['edu_time'])
  181. if len(_nums) >= 4:
  182. job_dict['edu_time_beg'] = '%s-%02d'%(_nums[0], int(_nums[1]))
  183. job_dict['edu_time_end'] = '%s-%02d'%(_nums[2], int(_nums[3]))
  184. job_dict['edu_time'] = '%s-%02d~%s-%02d'%(_nums[0], int(_nums[1]), _nums[2], int(_nums[3]))
  185. elif len(_nums) == 2:
  186. job_dict['edu_time'] = '%s-%02d~%s'%(_nums[0], int(_nums[1]), '至今')
  187. job_dict['edu_time_beg'] = '%s-%02d'%(_nums[0], int(_nums[1]))
  188. job_dict['edu_time_end'] = '%s'%('至今')
  189. elif len(time_list) == 2:
  190. nums_1 = re.findall('\d+', time_list[0])
  191. nums_2 = re.findall('\d+', time_list[1])
  192. nums_1.append('09')
  193. nums_2.append('07')
  194. job_dict['edu_time_beg'] = '%s-%02d'%(nums_1[0], int(nums_1[1]))
  195. try:
  196. job_dict['edu_time_end'] = '%s-%02d'%(nums_2[0], int(nums_2[1]))
  197. except:
  198. job_dict['edu_time_end'] = None
  199. try:
  200. job_dict['edu_time'] = '%s-%02d~%s-%02d'%(nums_1[0], int(nums_1[1]), nums_2[0], int(nums_2[1]))
  201. except:
  202. job_dict['edu_time'] = '%s-%02d~今'%(nums_1[0], int(nums_1[1]))
  203. elif len(time_list) == 1:
  204. _nums = re.findall('\d+', time_list[0])
  205. if '毕业' in data_list[0]:
  206. _nums.append('06')
  207. _nums.insert(0, '09')
  208. _nums.insert(0, str(int(_nums[1]) - year_dict[top_level]))
  209. job_dict['edu_time'] = '%s-%02d~%s-%02d'%(_nums[0], int(_nums[1]), _nums[2], int(_nums[3]))
  210. job_dict['edu_time_beg'] = '%s-%02d'%(_nums[0], int(_nums[1]))
  211. job_dict['edu_time_end'] = '%s-%02d'%(_nums[2], int(_nums[3]))
  212. else:
  213. _nums.append('09')
  214. job_dict['edu_time'] = '%s-%02d~%s'%(_nums[0], int(_nums[1]), '至今')
  215. job_dict['edu_time_beg'] = '%s-%02d'%(_nums[0], int(_nums[1]))
  216. job_dict['edu_time_end'] = '%s'%('至今')
  217. job_dict['edu_leval'] = edu_dict[top_level]
  218. if org:
  219. job_dict['edu_name'] = org
  220. else:
  221. job_dict['edu_name'] = ''
  222. edu_domain = ''
  223. for i in range(len(_list_data)):
  224. if org in _list_data[i]:
  225. continue
  226. if not _list_data[i] and '专业' in _list_data[i]:
  227. edu_domain = _list_data[i]
  228. if not edu_domain:
  229. for i in range(len(_list_data)):
  230. if org in _list_data[i]:
  231. continue
  232. if _list_data[i] and len(_list_data[i]) >= 3:
  233. edu_domain = _list_data[i]
  234. break
  235. if not edu_domain:
  236. for i in range(len(_list_data)):
  237. if org in _list_data[i]:
  238. for j in range(i+1, len(_list_data)):
  239. if _list_data[i] and len(_list_data[j]) >= 2:
  240. edu_domain = _list_data[j]
  241. break
  242. break
  243. job_dict['edu_domain'] = edu_domain
  244. if len(job_list) ==0:
  245. job_list.append(job_dict)
  246. else:
  247. if job_dict in job_list:
  248. continue
  249. if not job_dict['edu_time']:
  250. continue
  251. if int(job_dict['edu_time'][:4]) > int(job_list[-1]['edu_time'][:4]):
  252. job_list = [job_dict] + job_list
  253. else:
  254. job_list.append(job_dict)
  255. continue
  256. data_list[0] = re.sub(job_time[0], '', data_list[0])
  257. _list = re.split('\|\040+', data_list[0])
  258. #print(_list)
  259. if len(_list) == 1:
  260. __list = re.split('\040+', data_list[0])
  261. job_dict['edu_name'] = __list[1].strip()
  262. job_dict['edu_domain'] = __list[2].strip()
  263. job_dict['edu_leval'] = __list[3].strip()
  264. else:
  265. #if job_dict['edu_leval'] not in
  266. if len(_list) > 3:
  267. job_dict['edu_name'] = _list[2].strip()
  268. job_dict['edu_domain'] = _list[3].strip()
  269. job_dict['edu_leval'] = _list[1].strip()
  270. else:
  271. job_dict['edu_leval'] = _list[0].strip()
  272. job_dict['edu_name'] = _list[1].strip()
  273. job_dict['edu_domain'] = _list[2].strip()
  274. if '硕士' in _list[0] or '研究生' in _list[0]:
  275. job_dict['edu_leval'] = '硕士'
  276. elif '博士' in _list[0]:
  277. job_dict['edu_leval'] = '博士'
  278. elif '本科' in _list[0]:
  279. job_dict['edu_leval'] = '本科'
  280. elif '学士' in _list[0]:
  281. job_dict['edu_leval'] = '本科'
  282. # print(job_dict)
  283. if len(job_list) ==0:
  284. job_list.append(job_dict)
  285. else:
  286. if job_dict in job_list:
  287. continue
  288. if int(job_dict['edu_time'][:4]) > int(job_list[-1]['edu_time'][:4]):
  289. job_list = [job_dict] + job_list
  290. else:
  291. job_list.append(job_dict)
  292. #edu_list.append(job_dict['edu_time'] + job_dict['edu_name'] + job_dict['edu_domain'] + job_dict['edu_leval'])
  293. #if job_list[0]['edu_leval'] not in ['硕士', '博士', '本科', '博后'] and len(job_list[0]['edu_leval']) > 5:
  294. # job_list[0]['edu_leval'] = '本科'
  295. return job_list
  296. # 教育经历改 (已完成)
  297. def get_edu_list(lines):
  298. logging.info(lines)
  299. edu_list = [{"Time":None, "startTime":None, "endTime":None, "edu_name":None, "edu_domain":None, "edu_level":None}]
  300. regex_time = re.compile(r'((\d{4})[年\W]{1,2}(\d{1,2})[月\W]?[\d]{0,2})[至到\W]+((\d{4})[年\W]{1,2}(\d{1,2})[月\W]?)?([今])?|(\d{4})[至\W]+([\d今]{4})')
  301. regex_end = re.compile(r'毕业时间[\w\W]{0,5}(\d{4})[\W年]?(\d{0,2})[月\W]?')
  302. regex_level = re.compile(r'[大本专科硕博士研究生后]{2,}')
  303. regex_domain = re.compile(u'[\u4E00-\u9FA5]{2,10}', re.UNICODE)
  304. count = 0
  305. for line in lines:
  306. line = line.replace("学士","本科").replace("专业","").replace("学位","")
  307. for cell in re.split(r'[·\|\t]', line):
  308. if not cell.strip():
  309. continue
  310. flags = 0
  311. edu_time = regex_time.search(cell)
  312. edu_end_time = regex_end.search(cell)
  313. edu_level = regex_level.search(cell)
  314. edu_domain = regex_domain.search(cell)
  315. # 标准时间格式
  316. if edu_time:
  317. # 提交信息
  318. if edu_list[count].get("Time") and edu_list[count].get("edu_name"):
  319. edu_list.append({"Time":None, "startTime":None, "endTime":None, "edu_name":None, "edu_domain":None, "edu_level":None})
  320. count += 1
  321. edu_list[count]["startTime"] = '{:4d}-{:02d}'.format(int(edu_time.group(2)),int(edu_time.group(3)))
  322. # 年月日
  323. if edu_time.group(5) != None:
  324. edu_list[count]["endTime"] = '{:4d}-{:02d}'.format(int(edu_time.group(5)),int(edu_time.group(6)))
  325. edu_list[count]["Time"] = '{:4d}-{:02d}~{:4d}-{:02d}'.format(int(edu_time.group(2)),int(edu_time.group(3)),int(edu_time.group(5)),int(edu_time.group(6)))
  326. # 只有年
  327. elif edu_time.group(8) != None:
  328. edu_list[count]["Time"] = '{:4d}~{:4d}'.format(int(edu_time.group(8)),int(edu_time.group(9)))
  329. edu_list[count]["startTime"] = '{:4d}'.format(int(edu_time.group(8)))
  330. edu_list[count]["endTime"] = '{:4d}'.format(int(edu_time.group(9)))
  331. # 至今类
  332. else:
  333. edu_list[count]["endTime"] = edu_time.group(7)
  334. edu_list[count]['Time'] = '{:4d}-{:02d}~{}'.format(int(edu_time.group(2)),int(edu_time.group(3)),edu_time.group(7))
  335. flags = 1
  336. # 只有毕业时间
  337. elif edu_end_time:
  338. # 提交信息
  339. if edu_list[count].get("endTime") and edu_list[count].get("edu_name"):
  340. edu_list.append({"Time":None, "startTime":None, "endTime":None, "edu_name":None, "edu_domain":None, "edu_level":None})
  341. count += 1
  342. # 年月
  343. if edu_end_time.group(2):
  344. edu_list[count]["Time"] = '{:4d}-{:02d}~{:4d}-{:02d}'.format(int(edu_end_time.group(1))-3,int(edu_end_time.group(2)),int(edu_end_time.group(1)),int(edu_end_time.group(2)))
  345. edu_list[count]["endTime"] = '{:4d}-{:02d}'.format(int(edu_end_time.group(1)),int(edu_end_time.group(2)))
  346. # 只有年
  347. elif edu_end_time.group(1):
  348. edu_list[count]["Time"] = '{:4d}~{:4d}'.format(int(edu_end_time.group(1))-3,int(edu_end_time.group(1)))
  349. edu_list[count]["endTime"] = '{:4d}'.format(int(edu_end_time.group(1)))
  350. # 学历
  351. if (not edu_list[count].get("edu_level")) and edu_level:
  352. edu_list[count]["edu_level"] = edu_level.group(0)
  353. # WordTag 识别 学校/专业
  354. for word, tag in ner_tag(cell):
  355. if (not edu_list[count].get("edu_name")) and (tag == "组织机构类_教育组织机构"):
  356. edu_list[count]["edu_name"] = word.strip()
  357. flags = 1
  358. elif (not edu_list[count].get("edu_domain")) and (tag in "_术语类型"):
  359. edu_list[count]["edu_domain"] = word.strip()
  360. elif edu_list[count].get("edu_name") and edu_list[count].get("edu_domain"):
  361. break
  362. # LAC 识别 学校
  363. else:
  364. for word, tag in ner(cell):
  365. if (tag == "ORG"):
  366. edu_list[count]["edu_name"] = word
  367. flags = 1
  368. break
  369. # 未识别成功时填充专业
  370. if (not (edu_level or flags or edu_list[count].get("edu_domain"))) and edu_domain:
  371. edu_list[count]["edu_domain"] = edu_domain.group(0)
  372. # 剔除时间不存在、学校不存在的列
  373. if (not edu_list[-1].get("Time")) or (not edu_list[-1].get("edu_name")):
  374. edu_list.pop()
  375. return edu_list
  376. # 工作经历 (已完成)
  377. # ner + 分词 机构信息,人物身份信息,时间 工作内容区分判断
  378. # 其中,时间是判断是否下一份工作情况的主要标识符之一。字符数量
  379. # 时间类 数量词
  380. def get_job_list(lines):
  381. logging.info(lines)
  382. job_list = []
  383. re_txt = '\d{4,4}\040{0,2}.\d+\040{0,2}.?\040{0,2}[\-–至-\—~]{1,2}\040{0,2}\d{4,4}\040{0,2}.\040{0,2}\d+.?|\d{4,4}.\d+.?\040{0,2}[\-–-—]{0,2}\040{0,2}至?今|\d{4,4}.\d+.?\040{0,2}[\-–-]{1,2}\040{0,2}现在|\d{4,4}年\d+月\-\d{4,4}年\d+月|\d{4,4}年\d+月\-\~|\d{4,4}年\d+月[\-\~-]至今|\d{4,4}-\d+\040{0,2}[-\~至]\040{0,2}\d{4,4}-\d+|\d{4,4}-\d+\~|\d{4,4}-\d+\[~-]至今|\d{4,4}-\d+\040{0,2}至今'
  384. nums = []
  385. for i in range(len(lines)):
  386. #print(lines[i])
  387. #print(lines[i], re.findall(re_txt, lines[i]), re.findall('\||\040{1,}', lines[i]))
  388. if re.findall(re_txt, lines[i].replace(' ', '')) and re.findall('\||\040{1,}', lines[i]):
  389. nums.append(i)
  390. continue
  391. if re.findall(re_txt, lines[i].replace(' ', '')[:20]):
  392. nums.append(i)
  393. continue
  394. if len(lines[i].strip().replace(' ', '')) > 50:
  395. continue
  396. year_list = re.findall('19\d{2,2}.\d{1,2}|20\d{2,2}.\d{1,2}', lines[i])
  397. if len(year_list) >= 2:
  398. nums.append(i)
  399. elif len(year_list) == 1 and '至今' in lines[i]:
  400. nums.append(i)
  401. nums.append(len(lines))
  402. # logging.info(nums)
  403. logging.info('get_job_list :{}'.format(nums))
  404. for i in range(1, len(nums[:])):
  405. job_dict = {'job_time':'', 'job_leval':'','job_company':'','job_content':''}
  406. data_list = lines[nums[i-1]:nums[i]]
  407. if '' in data_list:
  408. data_list.remove('')
  409. org = ''
  410. person_professor_list = []
  411. org_index = -1
  412. end_index = 3
  413. job_time = re.findall(re_txt, data_list[0])
  414. if not job_time:
  415. year_list = re.findall('19\d{2,2}.\d{1,2}|20\d{2,2}.\d{1,2}', data_list[0])
  416. if len(year_list) >= 2:
  417. job_time = ['-'.join(year_list)]
  418. elif len(year_list) == 1 and '至今' in lines[i]:
  419. job_time = [year_list[0] + '-' + '至今']
  420. if not job_time:
  421. regex = re.compile(r'((\d{4})[年\W]+(\d{1,2})[\W]?[\w]?)[至到\W]+((\d{4})[年\W]+(\d{1,2})[\W]?[\w]?)?([今])?')
  422. job_time = [re.search(regex, data_list[0]).group(0)]
  423. job_dict['job_time'] = job_time[0]
  424. _nums = re.findall('\d+', job_dict['job_time'])
  425. #print(_nums)
  426. if len(_nums) >= 4:
  427. job_dict['job_time'] = '%s-%02d~%s-%02d'%(_nums[0], int(_nums[1]), _nums[2], int(_nums[3]))
  428. elif len(_nums) == 2:
  429. job_dict['job_time'] = '%s-%02d~%s'%(_nums[0], int(_nums[1]), '至今')
  430. data_list[0] = re.sub(job_time[0], '', data_list[0])
  431. data_list[0] = data_list[0].strip()
  432. ner_list = []
  433. for i in range(len(data_list[:3])):
  434. if '工作' in data_list[i][:4] and (re.findall(':|\:', data_list[i])):
  435. end_index = i
  436. break
  437. if not re.findall('\040|\||/', data_list[i]) and org:
  438. end_index = i
  439. break
  440. if len(data_list[i]) > 80:
  441. end_index = i
  442. break
  443. if data_list[i]:
  444. ner_data = ner_tag(data_list[i].strip())
  445. else:
  446. continue
  447. ner_list.append(ner_data)
  448. for x in ner_data:
  449. if x[1] == '人物类_概念' and len(x[0]) > 2:
  450. person_professor_list.append(x[0].strip())
  451. elif x[1] == '组织机构类_企事业单位' or x[1] == '组织机构类_教育组织机构':
  452. if not org:
  453. org = re.split('\040|\|/', x[0].strip())[0]
  454. org_index = i
  455. if not org:
  456. for i in range(len(ner_list)):
  457. ner_data = ner_list[i]
  458. for x in ner_data:
  459. if x[1] == '组织机构类':
  460. org = re.split('\040|\|/', x[0].strip())[0]
  461. break
  462. if not person_professor_list:
  463. for i in range(len(ner_list)):
  464. ner_data = ner_list[i]
  465. for x in ner_data:
  466. if x[1] == '人物类_概念':
  467. person_professor_list = [re.split('\040|\|/', x[0].strip())[0]]
  468. break
  469. data_line = ' '.join(data_list[:end_index])
  470. data_line = re.sub('\||/', ' ', data_line)
  471. _list_data = re.split('\040+',data_line)
  472. if len(_list_data) == 1:
  473. end_index = 0
  474. if not person_professor_list:
  475. for x in range(len(_list_data)):
  476. if re.findall('经理|工程师|会计|董事长|总监|秘书|主管|处长|局长|主任|讲师|教授', _list_data[x][-4:]):
  477. person_professor_list.append(_list_data[x])
  478. if not org:
  479. for x in range(len(_list_data)):
  480. if len(_list_data[x]) < 4:
  481. _list_data[x] = ''
  482. elif person_professor_list and re.findall('|'.join(person_professor_list), _list_data[x]):
  483. _list_data[x] = ''
  484. elif '经理' == _list_data[x][-2:]:
  485. _list_data[x] = ''
  486. for x in range(len(_list_data)):
  487. if _list_data[x]:
  488. org = _list_data[x]
  489. break
  490. if not person_professor_list:
  491. for x in range(len(_list_data)):
  492. if org in _list_data[x]:
  493. for j in range(x+1, len(_list_data)):
  494. if _list_data[j]:
  495. person_professor_list = [_list_data[j]]
  496. break
  497. break
  498. #print(org, person_professor_list, job_time)
  499. job_dict['job_company'] = org
  500. job_dict['job_leval'] = ' '.join(person_professor_list)
  501. job_dict['job_content'] = re.sub('工工作作内内容容::|工工作作内内容容::|工工作作内内容容', '工作内容:', ''.join(data_list[end_index:]))
  502. job_dict['job_content'] = re.sub('/', '-', job_dict['job_content'])
  503. job_list.append(job_dict)
  504. continue
  505. if len(data_list) > 1 and data_list[1] and data_list[1][-1] == '|':# and data_list[0] and data_list[0][-1] != '|':
  506. data_list[0] = data_list[0] + data_list[1]
  507. data_list[1] = ''
  508. elif len(data_list) > 2 and data_list[2] and data_list[2][-1] == '|' and data_list[0][-1] != '|' and '|' in str(data_list[0]) and data_list[1] and data_list[1][-1] != '|':
  509. data_list[0] = data_list[0] + data_list[1] + data_list[2]
  510. data_list[1] = ''
  511. data_list[2] = ''
  512. elif len(data_list) > 1 and data_list[1] and '工作职责:' in data_list[2]:
  513. data_list[0] = data_list[0] + data_list[1]
  514. data_list[1] = ''
  515. elif len(data_list) > 1 and '工作职责:' in data_list[3]:
  516. data_list[0] = data_list[0] + data_list[1] + data_list[2]
  517. data_list[1] = ''
  518. data_list[2] = ''
  519. job_time = re.findall(re_txt, data_list[0])
  520. job_dict['job_time'] = job_time[0]
  521. _nums = re.findall('\d+', job_dict['job_time'])
  522. #print(_nums)
  523. if len(_nums) >= 4:
  524. job_dict['job_time'] = '%s-%02d~%s-%02d'%(_nums[0], int(_nums[1]), _nums[2], int(_nums[3]))
  525. elif len(_nums) == 2:
  526. job_dict['job_time'] = '%s-%02d~%s'%(_nums[0], int(_nums[1]), '至今')
  527. data_list[0] = re.sub(job_time[0], '', data_list[0])
  528. data_list[0] = data_list[0].strip()
  529. data_list[0] = re.sub('历任:', ' ', data_list[0])
  530. _list = data_list[0].split('|')
  531. if len(_list) == 1:
  532. __list = re.split('\040{2,}', data_list[0])
  533. #print(__list)
  534. job_dict['job_leval'] = __list[1].strip()
  535. job_dict['job_company'] = __list[0].strip()
  536. else:
  537. job_dict['job_leval'] = _list[0].strip()
  538. job_dict['job_company'] = _list[1].strip()
  539. if '职级:' in data_list[1:]:
  540. data_list.remove('职级:')
  541. job_dict['job_content'] = re.sub('工工作作内内容容::|工工作作内内容容::|工工作作内内容容', '工作内容:', ''.join(data_list[1:]))
  542. job_dict['job_content'] = re.sub('/', '-', job_dict['job_content'])
  543. #print(job_dict)
  544. job_list.append(job_dict)
  545. return job_list
  546. # 项目经历 (已完成)
  547. # 项目名称未知
  548. def get_pro_list_o(lines):
  549. logging.info(lines)
  550. pro_list = [{"Time":None,"startTime":None,"endTime":None,"pro_name":None,"job_leval":None,"job_company":None,"content":None,},]
  551. regex = re.compile(r'((\d{4})[年\W]+(\d{1,2})[\W]?[\w]?)[至到\W]+((\d{4})[年\W]+(\d{1,2})[\W]?[\w]?)?([今])?')
  552. re_con = re.compile(r'负责内容(.*?)')
  553. re_na = re.compile(r'\W(.*?项目)\W')
  554. count = 0
  555. for line in lines:
  556. regex_time = regex.search(line)
  557. regex_content = re_con.search(line)
  558. regex_name = re_na.search(line)
  559. if regex_time:
  560. if pro_list[count].get("Time"):
  561. pro_list.append({"Time":None,"startTime":None,"endTime":None,"pro_name":None,"job_leval":None,"job_company":None,"content":None,})
  562. count += 1
  563. pro_list[count]["startTime"] = '{:4d}-{:02d}'.format(int(regex_time.group(2)),int(regex_time.group(3)))
  564. if regex_time.group(5) != None:
  565. pro_list[count]["endTime"] = '{:4d}-{:02d}'.format(int(regex_time.group(5)),int(regex_time.group(6)))
  566. pro_list[count]["Time"] = '{:4d}-{:02d}~{:4d}-{:02d}'.format(int(regex_time.group(2)),int(regex_time.group(3)),int(regex_time.group(5)),int(regex_time.group(6)))
  567. else:
  568. pro_list[count]["endTime"] = regex_time.group(7)
  569. pro_list[count]['Time'] = '{:4d}-{:02d}~{}'.format(int(regex_time.group(2)),int(regex_time.group(3)),regex_time.group(7))
  570. elif regex_name and (not pro_list[count].get("job_name")):
  571. pro_list[count]["pro_name"] = regex_name.group()
  572. elif pro_list[count].get("content"):
  573. pro_list[count]["content"] += line
  574. else:
  575. try:
  576. for word, tag in ner_tag(line):
  577. if (not pro_list[count].get("job_leval")) and (tag == "人物类_概念"):
  578. pro_list[count]["job_leval"] = word
  579. if (not pro_list[count].get("job_company")) and (tag in "组织机构类_企事业单位"):
  580. pro_list[count]["job_company"] = word
  581. except Exception as e:
  582. logging.error(e)
  583. pro_list[count]["content"] = line
  584. return pro_list
  585. # 项目经历 (UIE)
  586. def get_pro_list(lines):
  587. logging.info(lines)
  588. starts = []
  589. # 时间查找
  590. for index, line in enumerate(lines):
  591. if re.search(r'\d{4}', line):
  592. starts.append(index)
  593. # 简单筛选
  594. count = len(starts)
  595. c = (starts[-1] - starts[0])/count
  596. for i in range(count-1):
  597. if (starts[i+1]-starts[i] < c/2):
  598. starts[i+1] = starts[i]
  599. # 合并
  600. pro_list = []
  601. pros = {}
  602. index = 0
  603. for i in range(len(lines)):
  604. if i in starts:
  605. index = i
  606. pros[index] = [lines[i], []]
  607. pros[index][1].append(lines[i])
  608. elif not pros:
  609. continue
  610. else:
  611. pros[index][0] += lines[i]
  612. pros[index][1].append(lines[i])
  613. # 提取
  614. for key in pros.keys():
  615. info = pro_ie(pros[key][0])
  616. src = pros[key][1]
  617. for rst in info:
  618. if not rst.get("时间") or not rst.get("项目名称"):
  619. continue
  620. rst["工作内容"] = [{"text":""}]
  621. logging.info(rst)
  622. for l in src:
  623. if rst["时间"][0]["text"] in l:
  624. continue
  625. else:
  626. rst["工作内容"][0]["text"] += l
  627. for key in rst.keys():
  628. if key == "时间":
  629. time_list = [None, None, None, None, None, None]
  630. tim_list = re.findall(r'\d+', rst["时间"][0]["text"])
  631. i = 0
  632. for t in tim_list:
  633. if (len(t) == 4) and (i != 0):
  634. i = 3
  635. time_list[i] = t
  636. else:
  637. time_list[i] = t
  638. i += 1
  639. else:
  640. continue
  641. if time_list[3] is not None:
  642. if time_list[4] is not None:
  643. rst["时间"][0]["text"] = "{:4d}-{:02d}~{:4d}-{:02d}".format(int(time_list[0]),int(time_list[1]),int(time_list[3]),int(time_list[4]))
  644. else:
  645. rst["时间"][0]["text"] = "{:4d}~{:4d}".format(int(time_list[0]),int(time_list[3]))
  646. else:
  647. if time_list[1] is not None:
  648. rst["时间"][0]["text"] = "{:4d}-{:02d}~至今".format(int(time_list[0]),int(time_list[1]))
  649. else:
  650. rst["时间"][0]["text"] = "{:4d}~至今".format(int(time_list[0]))
  651. pro_list.extend([{key:rst[key][0]["text"] for key in rst.keys()} for rst in info])
  652. return pro_list
  653. # 培训经历 (已完成)
  654. # ner + 分词 (机构名) 培训项目 时间
  655. def get_cultivate_list(lines):
  656. logging.info(lines)
  657. job_list = []
  658. re_txt = '\d{4,4}.\d{1,2}.?\040{0,2}[\-–至-\—~]\040{0,2}\d{4,4}.\d{1,2}[月]?|\d+\.\d+\-至今|\d+年\d+月\-\d+年\d+月|\d+年\d+月\-\~|\d+年\d+月[\-\~]至今|\d+-\d+\040{0,2}[\~至]\040{0,2}\d+-\d+|\d+-\d+\~|\d+-\d+\~至今|\d+-\d+\040{0,2}至今|^\d{4,4}.\d{1,2}|\d{4,4}.'
  659. re_txt_1 = '\d{4,4}.\d{1,2}.?\040{0,2}[\-–至-\—~]\040{0,2}\d{4,4}.\d{1,2}[月]?|\d+\.\d+\-至今|\d+年\d+月\-\d+年\d+月|\d+年\d+月\-\~|\d+年\d+月[\-\~]至今|\d+-\d+\040{0,2}[\~至]\040{0,2}\d+-\d+|\d+-\d+\~|\d+-\d+\~至今|\d+-\d+\040{0,2}至今'
  660. nums = []
  661. for i in range(len(lines)):
  662. if re.findall(re_txt, lines[i].replace(' ', '')) and re.findall('\||\040{1,}', lines[i]):
  663. nums.append(i)
  664. continue
  665. if re.findall(re_txt, lines[i].replace(' ', '')[:20]):
  666. nums.append(i)
  667. if len(lines[i].strip().replace(' ', '')) > 50:
  668. continue
  669. nums.append(len(lines))
  670. year_dict = {18:4, 17:3,20:3,19:3,21:2,22:1}
  671. for i in range(1, len(nums[:])):
  672. job_dict = {'cultivate_time':'', 'cultivate_time_beg':'', 'cultivate_time_end':'', 'cultivate_name':'','cultivate_leval':'','cultivate_content':''}
  673. data_list = lines[nums[i-1]:nums[i]]
  674. data_line = ' '.join(data_list)
  675. data_line = re.sub('[\|\t]', ' ', data_line)
  676. data_line = re.sub('-{3,}', '', data_line)
  677. ner_data = ner(''.join(data_list[:2]))
  678. org = ''
  679. time_list = []
  680. for _ in ner_data:
  681. if _[1] == 'ORG' and not org:
  682. org = _[0].strip()
  683. elif _[1] == 'TIME' and len(_[1]) >= 4:
  684. time_list.append(_[0])
  685. #TIME
  686. logging.info(data_line)
  687. _list_data = re.split('\040+', data_line)
  688. top_level = 22
  689. end_index = 0
  690. remove_list = []
  691. if len(_list_data) <= 2:
  692. end_index = 0
  693. #continue
  694. job_time = re.findall(re_txt_1, data_list[0])
  695. if job_time:
  696. job_dict['cultivate_time'] = job_time[0]
  697. data_list[0] = re.sub(job_time[0], '', data_list[0])
  698. else:
  699. job_dict['cultivate_time'] = ''
  700. for t in time_list:
  701. data_list[0] = re.sub(t, '', data_list[0])
  702. _list = data_list[0].split('|')
  703. if len(_list) >= 2:
  704. job_dict['cultivate_name'] = _list[0].strip()
  705. job_dict['cultivate_leval'] = _list[1].strip()
  706. end_index = 1
  707. _nums = re.findall('\d+', job_dict['cultivate_time'])
  708. if len(_nums) >= 4:
  709. job_dict['cultivate_time_beg'] = '%s-%02d'%(_nums[0], int(_nums[1]))
  710. job_dict['cultivate_time_end'] = '%s-%02d'%(_nums[2], int(_nums[3]))
  711. job_dict['cultivate_time'] = '%s-%02d~%s-%02d'%(_nums[0], int(_nums[1]), _nums[2], int(_nums[3]))
  712. elif len(_nums) == 2:
  713. job_dict['cultivate_time'] = '%s-%02d~%s'%(_nums[0], int(_nums[1]), '至今')
  714. job_dict['cultivate_time_beg'] = '%s-%02d'%(_nums[0], int(_nums[1]))
  715. job_dict['cultivate_time_end'] = '%s'%('至今')
  716. elif len(time_list) == 2:
  717. nums_1 = re.findall('\d+', time_list[0])
  718. nums_2 = re.findall('\d+', time_list[1])
  719. nums_1.append('09')
  720. nums_2.append('07')
  721. job_dict['cultivate_time_beg'] = '%s-%02d'%(nums_1[0], int(nums_1[1]))
  722. job_dict['cultivate_time_end'] = '%s-%02d'%(nums_2[0], int(nums_2[1]))
  723. job_dict['cultivate_time'] = '%s-%02d~%s-%02d'%(nums_1[0], int(nums_1[1]), nums_2[0], int(nums_2[1]))
  724. elif len(time_list) == 1:
  725. _nums = re.findall('\d+', time_list[0])
  726. if '获得' in data_list[0]:
  727. _nums.append('01')
  728. _nums.insert(0, '01')
  729. _nums.insert(0, str(int(_nums[1]) - year_dict[top_level]))
  730. job_dict['cultivate_time'] = '%s-%02d~%s-%02d'%(_nums[0], int(_nums[1]), _nums[2], int(_nums[3]))
  731. job_dict['cultivate_time_beg'] = '%s-%02d'%(_nums[0], int(_nums[1]))
  732. job_dict['cultivate_time_end'] = '%s-%02d'%(_nums[2], int(_nums[3]))
  733. else:
  734. _nums.append('01')
  735. job_dict['cultivate_time'] = '%s-%02d~%s'%(_nums[0], int(_nums[1]), '至今')
  736. job_dict['cultivate_time_beg'] = '%s-%02d'%(_nums[0], int(_nums[1]))
  737. job_dict['cultivate_time_end'] = '%s'%('至今')
  738. job_dict['cultivate_content'] = re.sub('培培训训内内容容::|培培训训内内容容::|培培训训内内容容', '培训内容:', ''.join(data_list[end_index:]))
  739. if not job_dict['cultivate_name']:
  740. job_dict['cultivate_name'] = org
  741. logging.info(job_dict)
  742. job_list.append(job_dict)
  743. continue
  744. '''
  745. #print(nums)
  746. for i in range(1, len(nums[:])):
  747. job_dict = {'cultivate_time':'', 'cultivate_name':'','cultivate_leval':'','cultivate_content':''}
  748. data_list = lines[nums[i-1]:nums[i]]
  749. if '' in data_list:
  750. data_list.remove('')
  751. if len(data_list) > 1 and data_list[1] and data_list[1][-1] == '|' and data_list[0][-1] != '|':
  752. data_list[0] = data_list[0] + data_list[1]
  753. data_list[1] = ''
  754. job_time = re.findall(re_txt_1, data_list[0])
  755. job_dict['cultivate_time'] = job_time[0]
  756. _nums = re.findall('\d+', job_dict['cultivate_time'])
  757. if len(_nums) >= 4:
  758. job_dict['cultivate_time'] = '%s-%02d~%s-%02d'%(_nums[0], int(_nums[1]), _nums[2], int(_nums[3]))
  759. elif len(_nums) == 2:
  760. job_dict['cultivate_time'] = '%s-%02d~%s'%(_nums[0], int(_nums[1]), '至今')
  761. data_list[0] = re.sub(job_time[0], '', data_list[0])
  762. _list = data_list[0].split('|')
  763. if len(_list) >= 2:
  764. job_dict['cultivate_name'] = _list[0].strip()
  765. job_dict['cultivate_leval'] = _list[1].strip()
  766. job_dict['cultivate_content'] = re.sub('培培训训内内容容|培培训训内内容容::|培培训训内内容容::', '培训内容:', ''.join(data_list[1:]))
  767. else:
  768. job_dict['cultivate_content'] = re.sub('培培训训内内容容|培培训训内内容容::|培培训训内内容容::', '培训内容:', ''.join(data_list[0:]))
  769. #print(job_dict)
  770. '''
  771. return job_list
  772. # 语言能力
  773. def get_lag_list(lines):
  774. logging.info(lines)
  775. job_list = []
  776. re_lan = re.compile(r'(\w+[语话])')
  777. lag_dict = {'lag_name':'', 'lag_leval':""}
  778. for l in lines:
  779. if not l.strip():
  780. continue
  781. lag_name = re.search(re_lan, l)
  782. if lag_name and lag_name.group(1):
  783. if lag_dict['lag_name']:
  784. job_list.append(lag_dict)
  785. lag_dict['lag_name'] = lag_name.group(1)
  786. return job_list
  787. # 家庭情况
  788. def get_fam_list(lines):
  789. job_list = []
  790. fam_dict = {}
  791. for l in lines:
  792. if not l.strip():
  793. continue
  794. ls = l.split('|')
  795. if len(ls) == 1:
  796. continue
  797. fam_dict = {'fam_name':"",'fam_company':"",'fam_lable':"","fam_status":"", 'fam_job':""}
  798. fam_dict["fam_lable"] = ls[0].strip()
  799. fam_dict["fam_name"] = ls[1].strip()
  800. flag = 0
  801. if re.findall('\d岁|\d{4,5}', ls[2]):
  802. flag = 1
  803. fam_dict["fam_company"] = ls[flag+2].strip()
  804. fam_dict["fam_job"] = ls[flag+3].strip()
  805. fam_dict["fam_status"] = ls[flag+4].strip()
  806. #print(fam_dict)
  807. job_list.append(fam_dict)
  808. return job_list
  809. # 证书情况 时间+证书名称 (已完成)
  810. def get_cet_list_old(lines):
  811. logging.info(lines)
  812. job_list = []
  813. re_txt = '\d+年\d+月|\d+-\d+|\d+\.\d+'
  814. lines_word = ' '.join(lines)
  815. lines = re.findall('\d+年\d+月|\d+-\d+|\d+\.\d+', lines_word)
  816. nums = []
  817. for x in range(len(lines) - 1):
  818. _index = lines_word.index(lines[x])
  819. _end_index = lines_word.index(lines[x+1])
  820. l = lines_word[_index : _end_index]
  821. if not l.strip():
  822. continue
  823. lines_word = lines_word[_end_index:]
  824. job_time = re.findall(re_txt, l)
  825. cet_dict = {'cet_name':'','cet_time':""}
  826. if job_time:
  827. cet_dict['prize_time'] = job_time[0]
  828. l = re.sub(job_time[0], '', l)
  829. else:
  830. continue
  831. ls = re.split('\||\040+|\t+', l)
  832. logging.info(ls)
  833. for l in ls:
  834. if len(l) <= 3:
  835. continue
  836. cet_dict['prize_name'] = l.strip()
  837. break
  838. job_list.append(cet_dict)
  839. return job_list
  840. # 证书情况 时间+证书名称 (UIE已完成)
  841. def get_cet_list(lines):
  842. logging.info(lines)
  843. cet_list = []
  844. for line in lines:
  845. info = cet_ie(line)
  846. cet_list.extend([{key:rst[key][0]["text"] for key in rst.keys()} for rst in info if rst.get("证书")])
  847. return cet_list
  848. # 获奖情况 时间+获奖名称 (已完成)
  849. def get_prize_list_old(lines):
  850. logging.info(lines)
  851. job_list = []
  852. re_txt = '\d+年\d+月|\d+-\d+|\d{4,4}.\d{1,2}'
  853. lines_word = ' '.join(lines)
  854. lines = re.findall('\d+年\d+月|\d{4,4}-\d+|\d{4,4}.\d{1,2}', lines_word)
  855. nums = []
  856. for x in range(len(lines) - 1):
  857. _index = lines_word.index(lines[x])
  858. _end_index = lines_word.index(lines[x+1])
  859. l = lines_word[_index : _end_index]
  860. if not l.strip():
  861. continue
  862. lines_word = lines_word[_end_index:]
  863. job_time = re.findall(re_txt, l)
  864. cet_dict = {'prize_name':'','prize_time':""}
  865. if job_time:
  866. cet_dict['prize_time'] = job_time[0]
  867. l = re.sub(job_time[0], '', l)
  868. else:
  869. continue
  870. ls = re.split('\||\040+|\t+', l)
  871. logging.info(ls)
  872. for l in ls:
  873. if len(l) <= 3:
  874. continue
  875. cet_dict['prize_name'] = l.strip()
  876. break
  877. logging.info(cet_dict)
  878. job_list.append(cet_dict)
  879. return job_list
  880. # 获奖情况 时间+获奖名称 (UIE已完成)
  881. def get_prize_list(lines):
  882. logging.info(lines)
  883. prize_list = []
  884. for line in lines:
  885. info = prize_ie(line)
  886. prize_list.extend([{key:rst[key][0]["text"] for key in rst.keys()} for rst in info if rst.get("奖项")])
  887. return prize_list
  888. # 返回其他信息
  889. def get_other_list(lines):
  890. return "\n".join(lines)
  891. # Linux doc 文件处理
  892. def doc2pdf_linux(docPath, pdfPath):
  893. """
  894. 允许的文档格式:doc,docx
  895. 仅在linux平台下可以
  896. 需要在linux中下载好libreoffice
  897. """
  898. # 注意cmd中的libreoffice要和linux中安装的一致
  899. cmd = 'libreoffice6.3 --headless --convert-to pdf'.split() + [docPath] + ['--outdir'] + [pdfPath]
  900. # cmd = 'libreoffice6.2 --headless --convert-to pdf'.split() + [docPath]
  901. p = subprocess.Popen(cmd, stderr=subprocess.PIPE, stdout=subprocess.PIPE)
  902. p.wait(timeout=30) # 停顿30秒等待转化
  903. stdout, stderr = p.communicate()
  904. if stderr:
  905. raise subprocess.SubprocessError(stderr)
  906. # Windows doc 文件处理
  907. def doc2pdf_win(docPath, pdfPath):
  908. console.print(pdfPath+'/'+os.path.splitext(os.path.split(docPath)[-1])[0] + '.pdf')
  909. import win32com
  910. from win32com.client import DispatchEx, constants
  911. word = DispatchEx("Word.Application") #内部方法
  912. word.Visible = 1 # 后台运行,不显示
  913. word.DisplayAlerts = 0 # 不警告
  914. doc = word.Documents.Open(docPath) #转换源文件
  915. doc.SaveAs(pdfPath+'/'+os.path.splitext(os.path.split(docPath)[-1])[0] + '.pdf', FileFormat=17) #txt=4,html=10,docx=16,pdf=17 #新文件
  916. doc.Close() #关闭
  917. word.Quit() #退出
  918. # Win32 doc 文件处理
  919. def doc2pdf(docPath, pdfPath, system):
  920. """
  921. 注意使用绝对路径
  922. pdf的生成只写路径,不写名字
  923. """
  924. docPathTrue = os.path.abspath(docPath) # bugfix - searching files in windows/system32
  925. if system == "Linux":
  926. return doc2pdf_linux(docPathTrue, pdfPath)
  927. if system == "Windows":
  928. return doc2pdf_win(docPathTrue, pdfPath)
  929. # txt 纯文本解析(已完成)
  930. def parse_txt(path):
  931. with open(path, 'r', encoding='utf-8') as fp:
  932. data = fp.read()
  933. global block, block_rev
  934. chun = 1
  935. page = {1: []}
  936. if len(data.split("\n")) <= 2:
  937. for line in data.split("\n"):
  938. line = line.replace("\xa0", "").replace("【","").replace("】","").replace("教育/培训","教育经历").strip()
  939. for word in line.split():
  940. if word in block.keys():
  941. chun = block[word]
  942. page[chun] = []
  943. elif word:
  944. page[chun].append(word)
  945. else:
  946. for line in data.split("\n"):
  947. line = line.replace("\xa0", "").replace("【","").replace("】","").replace("教育/培训","教育经历")
  948. regex = re.compile(u'[\u3000]+',re.UNICODE)
  949. line = regex.sub('', line.strip())
  950. if line in block.keys():
  951. chun = block[line]
  952. page[chun] = []
  953. elif line:
  954. page[chun].append(line)
  955. result_data = []
  956. for key in page.keys():
  957. for index, func in zip([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], [get_base_info, get_job_intention, get_edu_list, get_job_list, get_pro_list, get_other_list, get_other_list, get_other_list, get_lag_list, get_cet_list, get_prize_list, get_cultivate_list]):
  958. if key == index:
  959. result_data.append({block_rev[index]:func(page[index])})
  960. with open("./results/"+os.path.splitext(os.path.split(path)[-1])[0]+'.json', 'w', encoding="utf-8") as fp:
  961. json.dump({"result":result_data}, fp, indent=4, ensure_ascii=False)
  962. # 纯文本 word 解析
  963. def read_from_word(doc, path):
  964. para_text = []
  965. for para in doc.paragraphs:
  966. para_text.append(para.text)
  967. global block, block_rev
  968. chun = 1
  969. page = {1: []}
  970. for line in para_text:
  971. regex = re.compile(u'[\uF000-\uF0FF]+',re.UNICODE)
  972. line = regex.sub('', line)
  973. if line in block.keys():
  974. chun = block[line]
  975. page[chun] = []
  976. elif line:
  977. page[chun].append(line)
  978. result_data = []
  979. for key in page.keys():
  980. for index, func in zip([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], [get_base_info, get_job_intention, get_edu_list, get_job_list, get_pro_list, get_other_list, get_other_list, get_other_list, get_lag_list, get_cet_list, get_prize_list, get_cultivate_list]):
  981. if key == index:
  982. result_data.append({block_rev[index]:func(page[index])})
  983. with open("./results/"+os.path.splitext(os.path.split(path)[-1])[0]+'.json', 'w', encoding="utf-8") as fp:
  984. json.dump({"result":result_data}, fp, indent=4, ensure_ascii=False)
  985. # 提取 word 表格(已完成)
  986. def check_word(path):
  987. doc = Document(path)
  988. tables = doc.tables
  989. if not tables:
  990. logging.info("this is raw text")
  991. read_from_word(doc, path)
  992. logging.info("this is a Table")
  993. global block
  994. with open("resources/keys.json", "r", encoding="utf-8") as fp:
  995. prk = json.load(fp)
  996. chun = 1
  997. page = {1: []}
  998. regex = re.compile(r'(\(\w{2,8}\))?((\w{2,8}))?')
  999. for table in tables:
  1000. lo = {} # 存储每一行去重后的数据
  1001. for row in range(0, len(table.rows)):
  1002. row_list = []
  1003. for col in range(0, len(table.row_cells(row))): # 提取row行的全部列数据
  1004. if len(''.join(table.cell(row, col).text)) <= 20:
  1005. row_list.append(re.sub(r'(\w)\n', r'\1', table.cell(row, col).text))
  1006. else:
  1007. row_list.append(regex.sub("", table.cell(row, col).text.replace(" ","").replace(":", ":").replace("学历\n学位","学历学位"))) # 去除字符串中的特殊字符,并添加到临时列表中
  1008. lo[row] = (sorted(set(row_list), key=row_list.index)) # 在不变顺序的前提下,去除List中的重复项
  1009. # 去除空项
  1010. for key in list(lo.keys()):
  1011. if "" in lo[key]:
  1012. lo[key].remove("")
  1013. if not lo[key]:
  1014. lo.pop(key)
  1015. for _, line in lo.items():
  1016. if (line[0] in block.keys()) or (line[0] in prk.keys()):
  1017. # 包含大类目名
  1018. if line[0] in block.keys():
  1019. # 指向当前类目
  1020. chun = block[line[0]]
  1021. if not page.get(chun):
  1022. page[chun] = []
  1023. # 去除类目名
  1024. line = '\n'.join(line[1:])
  1025. # 包含小类目
  1026. elif line[0] in prk.keys():
  1027. # 指向当前类目
  1028. chun = prk[line[0]]
  1029. if not page.get(chun):
  1030. page[chun] = []
  1031. # 不去除
  1032. line = '\n'.join(line)
  1033. else:
  1034. line = '\n'.join(line)
  1035. # 标准化小类目
  1036. for k in prk.keys():
  1037. line = line.replace(k+"\n", k+":")
  1038. page[chun].extend(line.split())
  1039. result_data = []
  1040. for key in page.keys():
  1041. for index, func in zip([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], [get_base_info, get_job_intention, get_edu_list, get_job_list, get_pro_list, get_other_list, get_other_list, get_other_list, get_lag_list, get_cet_list, get_prize_list, get_cultivate_list]):
  1042. if key == index:
  1043. result_data.append({block_rev[index]:func(page[index])})
  1044. with open("./results/"+os.path.splitext(os.path.split(path)[-1])[0]+'.json', 'w', encoding="utf-8") as fp:
  1045. json.dump({"result":result_data}, fp, indent=4, ensure_ascii=False)
  1046. # pdf 解析句子(已完成)
  1047. def parse_line_layout(layout, b):
  1048. texts = []
  1049. """解析页面内容,一行一行的解析"""
  1050. # bbox:
  1051. # x0:从页面左侧到框左边缘的距离。
  1052. # y0:从页面底部到框的下边缘的距离。
  1053. # x1:从页面左侧到方框右边缘的距离。
  1054. # y1:从页面底部到框的上边缘的距离
  1055. for textbox in layout:
  1056. if isinstance(textbox, LTTextBox) or isinstance(textbox, LTTextLine):
  1057. for char in textbox:
  1058. if isinstance(char, LTTextLineHorizontal):
  1059. texts.append([char.bbox[0], char.bbox[3], char.get_text().strip()])
  1060. # 按行排序
  1061. texts.sort(key=lambda x:-x[1])
  1062. global block, block_rev
  1063. chun = b
  1064. page = {chun: []}
  1065. for _, _, line in texts:
  1066. regex = re.compile(u'[\u007F|\u25A0|\u00B7|\uF000-\uF0FF]+',re.UNICODE)
  1067. line = regex.sub('', line)
  1068. regex_tips = re.compile(r'(\(.*?\))?((.*?))?')
  1069. # line = regex_tips.sub('', line)
  1070. line = line.strip()
  1071. if regex_tips.sub('', line).strip() in block.keys():
  1072. chun = block[regex_tips.sub('', line).strip()]
  1073. page[chun] = []
  1074. elif line:
  1075. page[chun].append(line)
  1076. return page, chun
  1077. # pdf 样式解析(已完成)
  1078. def read_from_pdf(path):
  1079. result = {}
  1080. global block_rev
  1081. with open(path, 'rb') as in_file:
  1082. parser = PDFParser(in_file) # 用文件对象来创建一个pdf文档分析器
  1083. doc: PDFDocument = PDFDocument(parser) # 创建pdf文档
  1084. rsrcmgr = PDFResourceManager() # 创建PDF,资源管理器,来共享资源
  1085. # 创建一个PDF设备对象
  1086. laparams = LAParams()
  1087. device = PDFPageAggregator(rsrcmgr, laparams=laparams)
  1088. # 创建一个PDF解释其对象
  1089. interpreter = PDFPageInterpreter(rsrcmgr, device)
  1090. # 循环遍历列表,每次处理一个page内容
  1091. # doc.get_pages() 获取page列表
  1092. interpreter = PDFPageInterpreter(rsrcmgr, device)
  1093. # 处理文档对象中每一页的内容
  1094. # 循环遍历列表,每次处理一个page的内容
  1095. b = 1
  1096. for page in PDFPage.create_pages(doc):
  1097. logging.debug('================ 新页面 ================')
  1098. interpreter.process_page(page)
  1099. layout = device.get_result()
  1100. r, b = parse_line_layout(layout, b)
  1101. for key in r.keys():
  1102. if result.get(key):
  1103. result[key].extend(r[key])
  1104. else:
  1105. result[key] = r[key]
  1106. result_data = []
  1107. for key in result.keys():
  1108. for index, func in zip([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], [get_base_info, get_job_intention, get_edu_list, get_job_list, get_pro_list, get_other_list, get_other_list, get_other_list, get_lag_list, get_cet_list, get_prize_list, get_cultivate_list]):
  1109. if key == index:
  1110. result_data.append({block_rev[index]:func(result[index])})
  1111. console.print(result_data)
  1112. with open("./results/"+os.path.splitext(os.path.split(path)[-1])[0]+'.json', 'w', encoding="utf-8") as fp:
  1113. json.dump({"result":result_data}, fp, indent=4, ensure_ascii=False)
  1114. # pdf 表格解析 ()
  1115. def parse_table_from_pdf(path):
  1116. global block, block_rev
  1117. result = {}
  1118. with pdfplumber.open(path) as pdf:
  1119. for page in pdf.pages:
  1120. key = None
  1121. for table in page.extract_tables():
  1122. for line in table:
  1123. for word in line:
  1124. if not key:
  1125. key = word
  1126. else:
  1127. result[key] = word
  1128. key = None
  1129. for key in block.keys():
  1130. if result.get(key):
  1131. logging.info({key: result[key]})
  1132. console.print(result)
  1133. # for key in result.keys():
  1134. # for index, func in zip([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], [get_base_info, get_job_intention, get_edu_list, get_job_list, get_pro_list, get_other_list, get_other_list, get_other_list, get_lag_list, get_cet_list, get_prize_list, get_cultivate_list]):
  1135. # if (key in block.keys()) and (block[key] == index):
  1136. # console.print(block_rev[index])
  1137. # try:
  1138. # console.print(func(result[index]), justify="left")
  1139. # except Exception as e:
  1140. # logging.error(e)
  1141. # break
  1142. # else:
  1143. # console.print({key: result[key]})
  1144. # break
  1145. # 检测 pdf 格式 (已完成)
  1146. def check_pdf(path):
  1147. """
  1148. # 输入:
  1149. # pdf 文件路径
  1150. # 输出:
  1151. # 文件包含元素 [Word, Table]
  1152. """
  1153. rst = []
  1154. for page_layout in extract_pages(path):
  1155. for element in page_layout:
  1156. if isinstance(element, LTFigure):
  1157. for cell in element:
  1158. if isinstance(cell, LTChar):
  1159. rst.append("Table")
  1160. break
  1161. elif isinstance(element, LTTextContainer):
  1162. rst.append("Word")
  1163. return set(rst)
  1164. # 检测传入格式(已完成)
  1165. def detection_type(path, system):
  1166. # 传入目录
  1167. if os.path.isdir(path):
  1168. for filename in os.listdir(path):
  1169. filename = os.path.join(path, filename)
  1170. # 传入为 doc
  1171. logging.info(filename)
  1172. if filename.endswith('.doc') and not filename.startswith('.~'):
  1173. doc2pdf(docPath = filename, pdfPath = './pdf', system=system)
  1174. newfile = './pdf/' + os.path.splitext(os.path.split(filename)[-1])[0] + '.pdf'
  1175. if os.path.exists(newfile):
  1176. rst = check_pdf(newfile)
  1177. if "Table" in rst:
  1178. parse_table_from_pdf(newfile)
  1179. pass
  1180. if "Word" in rst:
  1181. read_from_pdf(newfile)
  1182. # 传入为 docx
  1183. elif os.path.isfile(filename) and filename.endswith('.docx'):
  1184. check_word(filename)
  1185. # 传入为 pdf
  1186. if os.path.isfile(filename) and filename.endswith('.pdf'):
  1187. rst = check_pdf(filename)
  1188. if "Table" in rst:
  1189. parse_table_from_pdf(filename)
  1190. pass
  1191. if "Word" in rst:
  1192. read_from_pdf(filename)
  1193. # 传入为 txt
  1194. elif os.path.isfile(filename) and filename.endswith('.txt'):
  1195. parse_txt(filename)
  1196. # 传入为 doc
  1197. elif os.path.isfile(path) and path.endswith('.doc'):
  1198. doc2pdf(docPath = path, pdfPath = './pdf', system=system)
  1199. newfile = './pdf/' + os.path.splitext(os.path.split(path)[-1])[0] + '.pdf'
  1200. if os.path.exists(newfile):
  1201. rst = check_pdf(newfile)
  1202. if "Table" in rst:
  1203. parse_table_from_pdf(newfile)
  1204. pass
  1205. if "Word" in rst:
  1206. read_from_pdf(newfile)
  1207. # 传入为 docx
  1208. elif os.path.isfile(path) and path.endswith('.docx'):
  1209. check_word(path)
  1210. # 传入为 pdf
  1211. elif os.path.isfile(path) and path.endswith('.pdf'):
  1212. rst = check_pdf(path)
  1213. if "Table" in rst:
  1214. parse_table_from_pdf(path)
  1215. if "Word" in rst:
  1216. read_from_pdf(path)
  1217. # 传入为 txt
  1218. elif os.path.isfile(path) and path.endswith('.txt'):
  1219. parse_txt(path)
  1220. @app.post("/resume_parse")
  1221. async def file_upload(file: UploadFile = File(...)):
  1222. res = await file.read()
  1223. with open('./uploads/' + file.filename, "wb") as f:
  1224. f.write(res)
  1225. try:
  1226. detection_type('./uploads/' + file.filename, system)
  1227. with open('results/'+os.path.splitext(file.filename)[0]+'.json','r', encoding="utf-8") as ff:
  1228. rst = json.load(ff)
  1229. return rst
  1230. except Exception as e:
  1231. return {"errno":1, "msg":e}
  1232. if __name__ == '__main__':
  1233. import platform
  1234. system = platform.system()
  1235. if (system == "Windows"):
  1236. logging.info("Windows")
  1237. elif (system == "Linux"):
  1238. logging.info("Linux")
  1239. else:
  1240. logging.error("Unnot support this system")
  1241. # try:
  1242. # detection_type(sys.argv[1], system)
  1243. # except Exception as e:
  1244. # logging.error(e)
  1245. # detection_type(sys.argv[1], system)
  1246. # detection_type('w1.pdf', system)
  1247. uvicorn.run(app=app, host="0.0.0.0", port=8320)