123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288 |
- # -*- coding: utf-8 -*-
- # @Author: privacy
- # @Date: 2022-07-07 12:59:42
- # @Last Modified by: privacy
- # @Last Modified time: 2022-07-16 11:41:09
- # import pdb
- from pprint import pprint
- import json
- import pandas as pd
- import pdfplumber
- import docx
- from docx import Document
- from docx.shared import Inches
- path = "d:\\desktop\\社招简历模板.docx"
- # path = "d:\\desktop\\社招简历模板.pdf"
- keywords = ['姓名',
- '性别',
- '出生日期',
- '一寸照片',
- '民族',
- '出生地',
- '政治面貌(加入时间)',
- '参加工作时间',
- '健康状况',
- '外语水平',
- '初始学历、专业',
- '最高学历、专业',
- '初始学历毕业院校及毕业时间',
- '最高学历毕业院校及毕业时间',
- '专业技术资格(取得时间)',
- '职业技能等级(取得时间)',
- '熟悉专业有何专长',
- '工作单位',
- '现任职务',
- '任职时间',
- '提职时间',
- '意向岗位',
- '联系电话',
- '学习经历',
- '起止时间',
- '学校',
- '专业',
- '学历',
- '学位',
- '研究方向',
- '是否全日制',
- '培训',
- '起止时间',
- '培训类型',
- '机构',
- '内容',
- '成绩',
- '证书名称',
- '经历',
- '工作经历',
- '起止时间',
- '工作单位',
- '职务',
- '部门',
- '证明人',
- '备注',
- '对报名岗位认识及工作设想',
- '自我评价及主要工作业绩',
- '获得职业资格证书情况',
- '获得日期',
- '名称',
- '证书编码/文号',
- '授予单位',
- '备注',
- '奖惩',
- '项目',
- '时间',
- '项目单位',
- '证明材料',
- '情况',
- '主要家庭成员及社会关系',
- '称谓',
- '出生年月',
- '政治面貌',
- '工作单位及职务',
- '其他情况说明',
- '诚信承诺',
- '本人承诺,以上信息均与事实相符,若有虚假,愿承担一切后果并自愿取消应聘资格。'
- '承诺人:'
- '社会招聘工作办公室资格审查意见']
- def parse_line(line):
- result = []
- key = None
- for cell in line:
- if cell and ''.join(cell.split()) in keywords:
- key = ''.join(cell.split())
- elif cell and key:
- schema = {key:cell}
- result.append(schema)
- key = None
- return result
- def parse_word_layout(path):
- result = []
- doc = Document(path)
- lo = {}
- for _table in doc.tables[:]:
- for i, row in enumerate(_table.rows[:]):
- row_content = []
- for cell in row.cells[:]:
- c = cell.text
- if c not in row_content:
- row_content.append(c)
- lo[len(lo.keys())] = row_content
- kwln = -1# 关键词行长度
- kwline = None# 关键词行
- for key in lo.keys():
- for val in lo[key]:# 通过全关键词,判断此行是否为关键词行
- if val and ''.join(val.split()) not in keywords:# 有非关键字元素,非关键词行,判断是否为关键词行元素
- perc = 0# 行内关键词数量
- for c in lo[key]:
- if c and (''.join(c.split()) in keywords):# 找到此行有关键词
- perc += 1
- if c and (''.join(c.split()) in keywords) and (perc > len(lo[key])/3):# 关键词数量超过1/3,判断此行非关键词行元素
- perc = 0# 清空行内关键词数
- result.extend(parse_line(lo[key]))# 添加并解析普通行级元素
- break
- else:# 关键词行元素
- if len(kwline) != len(lo[key]):
- break
- schema = dict()
- for key, val in zip(kwline, lo[key]):# 合并关键词行和行元素
- if key:
- schema[key] = val
- result.append(schema)
- break
- break
- else:
- # print("{}:此行为关键词行!".format(lo[key]))
- if len(lo[key])>2:
- try:
- kwline = [''.join(cell.split()) for cell in lo[key]]
- except Exception as e:
- kwline = lo[key]
- kwln = len(lo[key])
- return result
- def parse_pdf_layout(path):
- result = []
- lo = {}
- with pdfplumber.open(path) as pdf:
- for page in pdf.pages:
- for table in page.extract_tables():
- for line in table:
- # lo[len(lo.keys())] = [cell for cell in line if cell]
- lo[len(lo.keys())] = line
- kwln = -1
- kwline = None
- for key in lo.keys():
- # pdb.set_trace()
- for val in lo[key]:# 通过全关键词,判断此行是否为关键词行
- if val and ''.join(val.split()) not in keywords:# 有非关键字元素,非关键词行,判断是否为关键词行元素
- # pdb.set_trace()
- for c in lo[key] or len(lo[key])!=kwln:
- # pdb.set_trace()
- if c and ''.join(c.split()) in keywords:# 非关键词行元素
- result.extend(parse_line(lo[key]))
- break
- else:# 关键词行元素
- schema = dict()
- for key, val in zip(kwline, lo[key]):
- if key:
- schema[key] = val if val else key
- result.append(schema)
- break
- break
- else:
- # print("此行为关键词行")
- # kwline = lo[key]
- kwline = []
- for cell in lo[key]:
- if cell:
- kwline.append(''.join(cell.split()))
- else:
- kwline.append(cell)
- kwln = len(lo[key])
- return result
- # 格式化数据
- def formatter(datalist):
- result = dict()
- for d in datalist:
- if len(d) == 1:
- for key in d.keys():
- result[key] = d[key]
- else:
- for k in list(d.keys()):
- if k == "".join(d[k].split()):
- d.pop(k)
- if result.get(k):
- result[k].append(d)
- else:
- result[k] = [d]
- # 转译数据库字段名
- with open("./resources/translate.json", "r", encoding="utf-8") as ff:
- json_obj = json.load(ff)
- normal = json_obj["base"]
- itenormal = json_obj["base"]
- edunormal = json_obj["tal_his_edu"]
- jobnormal = json_obj["tal_his_job"]
- cetnormal = json_obj["tal_vocational_qualification_certificate"]
- family = json_obj["tal_family_social_relations"]
- for key in normal.keys():
- if result.get(key):
- result[normal[key]] = result[key]
- result.pop(key)
- for idx in range(len(result['学习经历'])):
- for key in edunormal.keys():
- if result['学习经历'][idx].get(key):
- result['学习经历'][idx][edunormal[key]] = result['学习经历'][idx][key]
- result['学习经历'][idx].pop(key)
- for idx in range(len(result['工作经历'])):
- for key in jobnormal.keys():
- if result['工作经历'][idx].get(key):
- result['工作经历'][idx][jobnormal[key]] = result['工作经历'][idx][key]
- result['工作经历'][idx].pop(key)
- for idx in range(len(result['获得职业资格证书情况'])):
- for key in cetnormal.keys():
- if result['获得职业资格证书情况'][idx].get(key):
- result['获得职业资格证书情况'][idx][cetnormal[key]] = result['获得职业资格证书情况'][idx][key]
- result['获得职业资格证书情况'][idx].pop(key)
- for idx in range(len(result['主要家庭成员及社会关系'])):
- for key in family.keys():
- if result['主要家庭成员及社会关系'][idx].get(key):
- result['主要家庭成员及社会关系'][idx][family[key]] = result['主要家庭成员及社会关系'][idx][key]
- result['主要家庭成员及社会关系'][idx].pop(key)
- tit = {
- "基本信息":"base",
- "职业发展管理":"intent_job",
- "学习经历":"tal_his_edu",
- "工作经历":"tal_his_job",
- "项目经历":"tal_his_project",
- "培训经历":"tal_training_institutions",
- "获奖情况":"tal_rewards_punishments",
- "语言能力":"tal_language",
- "获得职业资格证书情况":"tal_vocational_qualification_certificate",
- "专业技能":"tal_professional_tech_certificate",
- "主要家庭成员及社会关系":"tal_family_social_relations",
- "其他情况说明":"intro"
- }
- for key in tit.keys():
- if result.get(key):
- result[tit[key]] = result[key]
- result.pop(key)
- # url = "http://192.168.1.110:9999/talent/getResumeData"
- # session = requests.Session()
- # session.mount('http://', HTTPAdapter(max_retries = 3))
- # try:
- # headers = {
- # 'contentType':'Application/json'
- # }
- # response = session.post(url=url, headers=headers, json={"ResumeData":result}, timeout=10)
- # print(response.text)
- # except Exception as e:
- # print(e)
- return result
- if __name__ == '__main__':
- if path.endswith(".pdf"):
- pprint(formatter(parse_pdf_layout(path)))
- else:
- pprint(formatter(parse_word_layout(path)))
|