Ingen beskrivning

Prashant Chaudhary 0179141b2e feat: add support for Elastcisearch as vector data source (#402) 2 år sedan
.github 91033c7221 chore: update pr template (#323) 2 år sedan
docs 0179141b2e feat: add support for Elastcisearch as vector data source (#402) 2 år sedan
embedchain 0179141b2e feat: add support for Elastcisearch as vector data source (#402) 2 år sedan
examples ec09a8a6fc example: embedchain playground (#384) 2 år sedan
notebooks 96143ac496 docs: app config instead of init config (#308) 2 år sedan
tests 0179141b2e feat: add support for Elastcisearch as vector data source (#402) 2 år sedan
.env.example ac68986404 Add project tools and contributing guidelines (#281) 2 år sedan
.gitignore c595003481 docs: setup docs for embedchain (#287) 2 år sedan
.pre-commit-config.yaml ac68986404 Add project tools and contributing guidelines (#281) 2 år sedan
CITATION.cff 736b645fea Add citation (#137) 2 år sedan
CONTRIBUTING.md c595003481 docs: setup docs for embedchain (#287) 2 år sedan
LICENSE 65d1ff37e8 Create LICENSE 2 år sedan
Makefile 05a4eef6ae chores: run lint and format (#284) 2 år sedan
README.md 12a2f78dcb add "d" on "Embedchain" in citation section title (#369) 2 år sedan
poetry.toml ac68986404 Add project tools and contributing guidelines (#281) 2 år sedan
pyproject.toml 0179141b2e feat: add support for Elastcisearch as vector data source (#402) 2 år sedan
setup.py 0179141b2e feat: add support for Elastcisearch as vector data source (#402) 2 år sedan

README.md

embedchain

PyPI Discord Twitter Substack Open in Colab

Embedchain is a framework to easily create LLM powered bots over any dataset. If you want a javascript version, check out embedchain-js

🔧 Quick install

pip install embedchain

🔥 Latest

  • [2023/07/19] Released support for 🦙 llama2 model. Start creating your llama2 based bots like this:
  import os

  from embedchain import Llama2App

  os.environ['REPLICATE_API_TOKEN'] = "REPLICATE API TOKEN"

  zuck_bot = Llama2App()

  # Embed your data
  zuck_bot.add("youtube_video", "https://www.youtube.com/watch?v=Ff4fRgnuFgQ")
  zuck_bot.add("web_page", "https://en.wikipedia.org/wiki/Mark_Zuckerberg")

  # Nice, your bot is ready now. Start asking questions to your bot.
  zuck_bot.query("Who is Mark Zuckerberg?")
  # Answer: Mark Zuckerberg is an American internet entrepreneur and business magnate. He is the co-founder and CEO of Facebook.

🔍 Demo

Try out embedchain in your browser:

Open in Colab

📖 Documentation

The documentation for embedchain can be found at docs.embedchain.ai.

💻 Usage

Embedchain empowers you to create chatbot models similar to ChatGPT, using your own evolving dataset.

Queries

For example, you can use Embedchain to create an Elon Musk bot using the following code:

import os
from embedchain import App

# Create a bot instance
os.environ["OPENAI_API_KEY"] = "YOUR API KEY"
elon_bot = App()

# Embed online resources
elon_bot.add("web_page", "https://en.wikipedia.org/wiki/Elon_Musk")
elon_bot.add("web_page", "https://tesla.com/elon-musk")
elon_bot.add("youtube_video", "https://www.youtube.com/watch?v=MxZpaJK74Y4")

# Query the bot
elon_bot.query("How many companies does Elon Musk run?")
# Answer: Elon Musk runs four companies: Tesla, SpaceX, Neuralink, and The Boring Company

🤝 Contributing

Contributions are welcome! Please check out the issues on the repository, and feel free to open a pull request. For more information, please see the contributing guidelines.

Citation

If you utilize this repository, please consider citing it with:

@misc{embedchain,
  author = {Taranjeet Singh},
  title = {Embedchain: Framework to easily create LLM powered bots over any dataset},
  year = {2023},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/embedchain/embedchain}},
}