Không có mô tả

Sidharth Mohanty 1020a4121f [new] streamlit deployment (#1034) 1 năm trước cách đây
.github bb28569abf Update workflow to run when required (#941) 1 năm trước cách đây
configs c0b5e93967 [Feature] add google ai embedder (#1019) 1 năm trước cách đây
docs 1020a4121f [new] streamlit deployment (#1034) 1 năm trước cách đây
embedchain 1020a4121f [new] streamlit deployment (#1034) 1 năm trước cách đây
embedchain-js d54cdc5b00 [Docs] Revamp documentation (#1010) 1 năm trước cách đây
examples 7ee2d0653b Update Sadhguru AI code (#1037) 1 năm trước cách đây
notebooks 9943d1e015 [chore] Remove `deployment_name` for openai embedder and update docs (#1022) 1 năm trước cách đây
tests cd2c40a9c4 OpenAI function calling support (#1011) 1 năm trước cách đây
.env.example 702067e521 Improve user readability of .env.example (#781) 1 năm trước cách đây
.gitignore 8dd5cb9602 Add `rest-api` example (#889) 1 năm trước cách đây
.pre-commit-config.yaml ac68986404 Add project tools and contributing guidelines (#281) 2 năm trước cách đây
CITATION.cff 736b645fea Add citation (#137) 2 năm trước cách đây
CONTRIBUTING.md 76f1993e7a Update CONTRIBUTING.md (#845) 1 năm trước cách đây
LICENSE 65d1ff37e8 Create LICENSE 2 năm trước cách đây
Makefile 7641cba01d [Feature] JSON data loader support (#816) 1 năm trước cách đây
README.md 43926fb527 Update introduction in README and docs (#1036) 1 năm trước cách đây
poetry.lock 3cd50c4cd9 [Deployment] Setup fly.io deployment method and update docs (#1028) 1 năm trước cách đây
poetry.toml ac68986404 Add project tools and contributing guidelines (#281) 2 năm trước cách đây
pyproject.toml 48c38b5dc3 Telemetry support for `ec` cli commands (#1030) 1 năm trước cách đây

README.md

Embedchain Logo

PyPI Downloads Slack Discord Twitter Open in Colab codecov


Checkout our latest Sadhguru AI app built using Embedchain.

What is Embedchain?

Embedchain is an Open Source RAG Framework that makes it easy to create and deploy AI apps. At its core, Embedchain follows the design principle of being "Conventional but Configurable" to serve both software engineers and machine learning engineers.

Embedchain streamlines the creation of RAG applications, offering a seamless process for managing various types of unstructured data. It efficiently segments data into manageable chunks, generates relevant embeddings, and stores them in a vector database for optimized retrieval. With a suite of diverse APIs, it enables users to extract contextual information, find precise answers, or engage in interactive chat conversations, all tailored to their own data.

🔧 Quick install

Python API

pip install embedchain

🔍 Usage and Demo

Embedchain Demo

For example, you can create an Elon Musk bot using the following code:

import os
from embedchain import Pipeline as App

# Create a bot instance
os.environ["OPENAI_API_KEY"] = "YOUR API KEY"
elon_bot = App()

# Embed online resources
elon_bot.add("https://en.wikipedia.org/wiki/Elon_Musk")
elon_bot.add("https://www.forbes.com/profile/elon-musk")

# Query the bot
elon_bot.query("How many companies does Elon Musk run and name those?")
# Answer: Elon Musk currently runs several companies. As of my knowledge, he is the CEO and lead designer of SpaceX, the CEO and product architect of Tesla, Inc., the CEO and founder of Neuralink, and the CEO and founder of The Boring Company. However, please note that this information may change over time, so it's always good to verify the latest updates.

You can also try it in your browser with Google Colab:

Open in Colab

📖 Documentation

Comprehensive guides and API documentation are available to help you get the most out of Embedchain:

🔗 Join the Community

Connect with fellow developers and users by joining our Slack Workspace or Discord Community. Dive into discussions, ask questions, and share your experiences.

🤝 Schedule a 1-on-1 Session

Book a 1-on-1 Session with the founders, to discuss any issues, provide feedback, or explore how we can improve Embedchain for you.

🌐 Contributing

Contributions are welcome! Please check out the issues on the repository, and feel free to open a pull request. For more information, please see the contributing guidelines.

For more reference, please go through Development Guide and Documentation Guide.

Anonymous Telemetry

We collect anonymous usage metrics to enhance our package's quality and user experience. This includes data like feature usage frequency and system info, but never personal details. The data helps us prioritize improvements and ensure compatibility. If you wish to opt-out, set the environment variable EC_TELEMETRY=false. We prioritize data security and don't share this data externally.

Citation

If you utilize this repository, please consider citing it with:

@misc{embedchain,
  author = {Taranjeet Singh, Deshraj Yadav},
  title = {Embedchain: Data platform for LLMs - load, index, retrieve, and sync any unstructured data},
  year = {2023},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/embedchain/embedchain}},
}