12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970 |
- import json
- import os
- from typing import Any, Callable, Dict, Optional, Type, Union
- from langchain.schema import BaseMessage, HumanMessage, SystemMessage
- from langchain_core.tools import BaseTool
- from langchain_openai import ChatOpenAI
- from pydantic import BaseModel
- from embedchain.config import BaseLlmConfig
- from embedchain.helpers.json_serializable import register_deserializable
- from embedchain.llm.base import BaseLlm
- @register_deserializable
- class OpenAILlm(BaseLlm):
- def __init__(
- self,
- config: Optional[BaseLlmConfig] = None,
- tools: Optional[Union[Dict[str, Any], Type[BaseModel], Callable[..., Any], BaseTool]] = None,
- ):
- self.tools = tools
- super().__init__(config=config)
- def get_llm_model_answer(self, prompt) -> str:
- response = self._get_answer(prompt, self.config)
- return response
- def _get_answer(self, prompt: str, config: BaseLlmConfig) -> str:
- messages = []
- if config.system_prompt:
- messages.append(SystemMessage(content=config.system_prompt))
- messages.append(HumanMessage(content=prompt))
- kwargs = {
- "model": config.model or "gpt-3.5-turbo",
- "temperature": config.temperature,
- "max_tokens": config.max_tokens,
- "model_kwargs": {},
- }
- api_key = config.api_key or os.environ["OPENAI_API_KEY"]
- if config.top_p:
- kwargs["model_kwargs"]["top_p"] = config.top_p
- if config.stream:
- from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
- callbacks = config.callbacks if config.callbacks else [StreamingStdOutCallbackHandler()]
- chat = ChatOpenAI(**kwargs, streaming=config.stream, callbacks=callbacks, api_key=api_key)
- else:
- chat = ChatOpenAI(**kwargs, api_key=api_key)
- if self.tools:
- return self._query_function_call(chat, self.tools, messages)
- return chat.invoke(messages).content
- def _query_function_call(
- self,
- chat: ChatOpenAI,
- tools: Optional[Union[Dict[str, Any], Type[BaseModel], Callable[..., Any], BaseTool]],
- messages: list[BaseMessage],
- ) -> str:
- from langchain.output_parsers.openai_tools import JsonOutputToolsParser
- from langchain_core.utils.function_calling import \
- convert_to_openai_tool
- openai_tools = [convert_to_openai_tool(tools)]
- chat = chat.bind(tools=openai_tools).pipe(JsonOutputToolsParser())
- try:
- return json.dumps(chat.invoke(messages)[0])
- except IndexError:
- return "Input could not be mapped to the function!"
|