openai.py 2.6 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970
  1. import json
  2. import os
  3. from typing import Any, Callable, Dict, Optional, Type, Union
  4. from langchain.schema import BaseMessage, HumanMessage, SystemMessage
  5. from langchain_core.tools import BaseTool
  6. from langchain_openai import ChatOpenAI
  7. from pydantic import BaseModel
  8. from embedchain.config import BaseLlmConfig
  9. from embedchain.helpers.json_serializable import register_deserializable
  10. from embedchain.llm.base import BaseLlm
  11. @register_deserializable
  12. class OpenAILlm(BaseLlm):
  13. def __init__(
  14. self,
  15. config: Optional[BaseLlmConfig] = None,
  16. tools: Optional[Union[Dict[str, Any], Type[BaseModel], Callable[..., Any], BaseTool]] = None,
  17. ):
  18. self.tools = tools
  19. super().__init__(config=config)
  20. def get_llm_model_answer(self, prompt) -> str:
  21. response = self._get_answer(prompt, self.config)
  22. return response
  23. def _get_answer(self, prompt: str, config: BaseLlmConfig) -> str:
  24. messages = []
  25. if config.system_prompt:
  26. messages.append(SystemMessage(content=config.system_prompt))
  27. messages.append(HumanMessage(content=prompt))
  28. kwargs = {
  29. "model": config.model or "gpt-3.5-turbo",
  30. "temperature": config.temperature,
  31. "max_tokens": config.max_tokens,
  32. "model_kwargs": {},
  33. }
  34. api_key = config.api_key or os.environ["OPENAI_API_KEY"]
  35. if config.top_p:
  36. kwargs["model_kwargs"]["top_p"] = config.top_p
  37. if config.stream:
  38. from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
  39. callbacks = config.callbacks if config.callbacks else [StreamingStdOutCallbackHandler()]
  40. chat = ChatOpenAI(**kwargs, streaming=config.stream, callbacks=callbacks, api_key=api_key)
  41. else:
  42. chat = ChatOpenAI(**kwargs, api_key=api_key)
  43. if self.tools:
  44. return self._query_function_call(chat, self.tools, messages)
  45. return chat.invoke(messages).content
  46. def _query_function_call(
  47. self,
  48. chat: ChatOpenAI,
  49. tools: Optional[Union[Dict[str, Any], Type[BaseModel], Callable[..., Any], BaseTool]],
  50. messages: list[BaseMessage],
  51. ) -> str:
  52. from langchain.output_parsers.openai_tools import JsonOutputToolsParser
  53. from langchain_core.utils.function_calling import \
  54. convert_to_openai_tool
  55. openai_tools = [convert_to_openai_tool(tools)]
  56. chat = chat.bind(tools=openai_tools).pipe(JsonOutputToolsParser())
  57. try:
  58. return json.dumps(chat.invoke(messages)[0])
  59. except IndexError:
  60. return "Input could not be mapped to the function!"