123456789101112131415161718192021222324252627282930313233343536 |
- import importlib
- import logging
- from typing import Optional
- from embedchain.config import BaseLlmConfig
- from embedchain.helpers.json_serializable import register_deserializable
- from embedchain.llm.base import BaseLlm
- @register_deserializable
- class VertexAILlm(BaseLlm):
- def __init__(self, config: Optional[BaseLlmConfig] = None):
- try:
- importlib.import_module("vertexai")
- except ModuleNotFoundError:
- raise ModuleNotFoundError(
- "The required dependencies for VertexAI are not installed."
- 'Please install with `pip install --upgrade "embedchain[vertexai]"`'
- ) from None
- super().__init__(config=config)
- def get_llm_model_answer(self, prompt):
- return VertexAILlm._get_answer(prompt=prompt, config=self.config)
- @staticmethod
- def _get_answer(prompt: str, config: BaseLlmConfig) -> str:
- from langchain_community.chat_models import ChatVertexAI
- chat = ChatVertexAI(temperature=config.temperature, model=config.model)
- if config.top_p and config.top_p != 1:
- logging.warning("Config option `top_p` is not supported by this model.")
- messages = BaseLlm._get_messages(prompt, system_prompt=config.system_prompt)
- return chat(messages).content
|