nvidia.py 3.3 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768
  1. import os
  2. from collections.abc import Iterable
  3. from typing import Any, Optional, Union
  4. from langchain.callbacks.manager import CallbackManager
  5. from langchain.callbacks.stdout import StdOutCallbackHandler
  6. from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
  7. try:
  8. from langchain_nvidia_ai_endpoints import ChatNVIDIA
  9. except ImportError:
  10. raise ImportError(
  11. "NVIDIA AI endpoints requires extra dependencies. Install with `pip install langchain-nvidia-ai-endpoints`"
  12. ) from None
  13. from embedchain.config import BaseLlmConfig
  14. from embedchain.helpers.json_serializable import register_deserializable
  15. from embedchain.llm.base import BaseLlm
  16. @register_deserializable
  17. class NvidiaLlm(BaseLlm):
  18. def __init__(self, config: Optional[BaseLlmConfig] = None):
  19. super().__init__(config=config)
  20. if not self.config.api_key and "NVIDIA_API_KEY" not in os.environ:
  21. raise ValueError("Please set the NVIDIA_API_KEY environment variable or pass it in the config.")
  22. def get_llm_model_answer(self, prompt) -> tuple[str, Optional[dict[str, Any]]]:
  23. if self.config.token_usage:
  24. response, token_info = self._get_answer(prompt, self.config)
  25. model_name = "nvidia/" + self.config.model
  26. if model_name not in self.config.model_pricing_map:
  27. raise ValueError(
  28. f"Model {model_name} not found in `model_prices_and_context_window.json`. \
  29. You can disable token usage by setting `token_usage` to False."
  30. )
  31. total_cost = (
  32. self.config.model_pricing_map[model_name]["input_cost_per_token"] * token_info["input_tokens"]
  33. ) + self.config.model_pricing_map[model_name]["output_cost_per_token"] * token_info["output_tokens"]
  34. response_token_info = {
  35. "prompt_tokens": token_info["input_tokens"],
  36. "completion_tokens": token_info["output_tokens"],
  37. "total_tokens": token_info["input_tokens"] + token_info["output_tokens"],
  38. "total_cost": round(total_cost, 10),
  39. "cost_currency": "USD",
  40. }
  41. return response, response_token_info
  42. return self._get_answer(prompt, self.config)
  43. @staticmethod
  44. def _get_answer(prompt: str, config: BaseLlmConfig) -> Union[str, Iterable]:
  45. callback_manager = [StreamingStdOutCallbackHandler()] if config.stream else [StdOutCallbackHandler()]
  46. model_kwargs = config.model_kwargs or {}
  47. labels = model_kwargs.get("labels", None)
  48. params = {"model": config.model, "nvidia_api_key": config.api_key or os.getenv("NVIDIA_API_KEY")}
  49. if config.system_prompt:
  50. params["system_prompt"] = config.system_prompt
  51. if config.temperature:
  52. params["temperature"] = config.temperature
  53. if config.top_p:
  54. params["top_p"] = config.top_p
  55. if labels:
  56. params["labels"] = labels
  57. llm = ChatNVIDIA(**params, callback_manager=CallbackManager(callback_manager))
  58. chat_response = llm.invoke(prompt) if labels is None else llm.invoke(prompt, labels=labels)
  59. if config.token_usage:
  60. return chat_response.content, chat_response.response_metadata["token_usage"]
  61. return chat_response.content