1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768 |
- import os
- from collections.abc import Iterable
- from typing import Any, Optional, Union
- from langchain.callbacks.manager import CallbackManager
- from langchain.callbacks.stdout import StdOutCallbackHandler
- from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
- try:
- from langchain_nvidia_ai_endpoints import ChatNVIDIA
- except ImportError:
- raise ImportError(
- "NVIDIA AI endpoints requires extra dependencies. Install with `pip install langchain-nvidia-ai-endpoints`"
- ) from None
- from embedchain.config import BaseLlmConfig
- from embedchain.helpers.json_serializable import register_deserializable
- from embedchain.llm.base import BaseLlm
- @register_deserializable
- class NvidiaLlm(BaseLlm):
- def __init__(self, config: Optional[BaseLlmConfig] = None):
- super().__init__(config=config)
- if not self.config.api_key and "NVIDIA_API_KEY" not in os.environ:
- raise ValueError("Please set the NVIDIA_API_KEY environment variable or pass it in the config.")
- def get_llm_model_answer(self, prompt) -> tuple[str, Optional[dict[str, Any]]]:
- if self.config.token_usage:
- response, token_info = self._get_answer(prompt, self.config)
- model_name = "nvidia/" + self.config.model
- if model_name not in self.config.model_pricing_map:
- raise ValueError(
- f"Model {model_name} not found in `model_prices_and_context_window.json`. \
- You can disable token usage by setting `token_usage` to False."
- )
- total_cost = (
- self.config.model_pricing_map[model_name]["input_cost_per_token"] * token_info["input_tokens"]
- ) + self.config.model_pricing_map[model_name]["output_cost_per_token"] * token_info["output_tokens"]
- response_token_info = {
- "prompt_tokens": token_info["input_tokens"],
- "completion_tokens": token_info["output_tokens"],
- "total_tokens": token_info["input_tokens"] + token_info["output_tokens"],
- "total_cost": round(total_cost, 10),
- "cost_currency": "USD",
- }
- return response, response_token_info
- return self._get_answer(prompt, self.config)
- @staticmethod
- def _get_answer(prompt: str, config: BaseLlmConfig) -> Union[str, Iterable]:
- callback_manager = [StreamingStdOutCallbackHandler()] if config.stream else [StdOutCallbackHandler()]
- model_kwargs = config.model_kwargs or {}
- labels = model_kwargs.get("labels", None)
- params = {"model": config.model, "nvidia_api_key": config.api_key or os.getenv("NVIDIA_API_KEY")}
- if config.system_prompt:
- params["system_prompt"] = config.system_prompt
- if config.temperature:
- params["temperature"] = config.temperature
- if config.top_p:
- params["top_p"] = config.top_p
- if labels:
- params["labels"] = labels
- llm = ChatNVIDIA(**params, callback_manager=CallbackManager(callback_manager))
- chat_response = llm.invoke(prompt) if labels is None else llm.invoke(prompt, labels=labels)
- if config.token_usage:
- return chat_response.content, chat_response.response_metadata["token_usage"]
- return chat_response.content
|