12345678910111213141516171819202122232425262728293031323334353637383940414243 |
- from typing import Optional
- import openai
- from embedchain.config import BaseLlmConfig
- from embedchain.llm.base_llm import BaseLlm
- from embedchain.helper_classes.json_serializable import register_deserializable
- @register_deserializable
- class OpenAiLlm(BaseLlm):
- def __init__(self, config: Optional[BaseLlmConfig] = None):
- super().__init__(config=config)
- # NOTE: This class does not use langchain. One reason is that `top_p` is not supported.
- def get_llm_model_answer(self, prompt):
- messages = []
- if self.config.system_prompt:
- messages.append({"role": "system", "content": self.config.system_prompt})
- messages.append({"role": "user", "content": prompt})
- response = openai.ChatCompletion.create(
- model=self.config.model or "gpt-3.5-turbo-0613",
- messages=messages,
- temperature=self.config.temperature,
- max_tokens=self.config.max_tokens,
- top_p=self.config.top_p,
- stream=self.config.stream,
- )
- if self.config.stream:
- return self._stream_llm_model_response(response)
- else:
- return response["choices"][0]["message"]["content"]
- def _stream_llm_model_response(self, response):
- """
- This is a generator for streaming response from the OpenAI completions API
- """
- for line in response:
- chunk = line["choices"][0].get("delta", {}).get("content", "")
- yield chunk
|