openai_llm.py 1.5 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243
  1. from typing import Optional
  2. import openai
  3. from embedchain.config import BaseLlmConfig
  4. from embedchain.llm.base_llm import BaseLlm
  5. from embedchain.helper_classes.json_serializable import register_deserializable
  6. @register_deserializable
  7. class OpenAiLlm(BaseLlm):
  8. def __init__(self, config: Optional[BaseLlmConfig] = None):
  9. super().__init__(config=config)
  10. # NOTE: This class does not use langchain. One reason is that `top_p` is not supported.
  11. def get_llm_model_answer(self, prompt):
  12. messages = []
  13. if self.config.system_prompt:
  14. messages.append({"role": "system", "content": self.config.system_prompt})
  15. messages.append({"role": "user", "content": prompt})
  16. response = openai.ChatCompletion.create(
  17. model=self.config.model or "gpt-3.5-turbo-0613",
  18. messages=messages,
  19. temperature=self.config.temperature,
  20. max_tokens=self.config.max_tokens,
  21. top_p=self.config.top_p,
  22. stream=self.config.stream,
  23. )
  24. if self.config.stream:
  25. return self._stream_llm_model_response(response)
  26. else:
  27. return response["choices"][0]["message"]["content"]
  28. def _stream_llm_model_response(self, response):
  29. """
  30. This is a generator for streaming response from the OpenAI completions API
  31. """
  32. for line in response:
  33. chunk = line["choices"][0].get("delta", {}).get("content", "")
  34. yield chunk