123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261 |
- import os
- import httpx
- import pytest
- from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
- from embedchain.config import BaseLlmConfig
- from embedchain.llm.openai import OpenAILlm
- @pytest.fixture()
- def env_config():
- os.environ["OPENAI_API_KEY"] = "test_api_key"
- os.environ["OPENAI_API_BASE"] = "https://api.openai.com/v1/engines/"
- yield
- os.environ.pop("OPENAI_API_KEY")
- @pytest.fixture
- def config(env_config):
- config = BaseLlmConfig(
- temperature=0.7,
- max_tokens=50,
- top_p=0.8,
- stream=False,
- system_prompt="System prompt",
- model="gpt-3.5-turbo",
- http_client_proxies=None,
- http_async_client_proxies=None,
- )
- yield config
- def test_get_llm_model_answer(config, mocker):
- mocked_get_answer = mocker.patch("embedchain.llm.openai.OpenAILlm._get_answer", return_value="Test answer")
- llm = OpenAILlm(config)
- answer = llm.get_llm_model_answer("Test query")
- assert answer == "Test answer"
- mocked_get_answer.assert_called_once_with("Test query", config)
- def test_get_llm_model_answer_with_system_prompt(config, mocker):
- config.system_prompt = "Custom system prompt"
- mocked_get_answer = mocker.patch("embedchain.llm.openai.OpenAILlm._get_answer", return_value="Test answer")
- llm = OpenAILlm(config)
- answer = llm.get_llm_model_answer("Test query")
- assert answer == "Test answer"
- mocked_get_answer.assert_called_once_with("Test query", config)
- def test_get_llm_model_answer_empty_prompt(config, mocker):
- mocked_get_answer = mocker.patch("embedchain.llm.openai.OpenAILlm._get_answer", return_value="Test answer")
- llm = OpenAILlm(config)
- answer = llm.get_llm_model_answer("")
- assert answer == "Test answer"
- mocked_get_answer.assert_called_once_with("", config)
- def test_get_llm_model_answer_with_token_usage(config, mocker):
- test_config = BaseLlmConfig(
- temperature=config.temperature,
- max_tokens=config.max_tokens,
- top_p=config.top_p,
- stream=config.stream,
- system_prompt=config.system_prompt,
- model=config.model,
- token_usage=True,
- )
- mocked_get_answer = mocker.patch(
- "embedchain.llm.openai.OpenAILlm._get_answer",
- return_value=("Test answer", {"prompt_tokens": 1, "completion_tokens": 2}),
- )
- llm = OpenAILlm(test_config)
- answer, token_info = llm.get_llm_model_answer("Test query")
- assert answer == "Test answer"
- assert token_info == {
- "prompt_tokens": 1,
- "completion_tokens": 2,
- "total_tokens": 3,
- "total_cost": 5.5e-06,
- "cost_currency": "USD",
- }
- mocked_get_answer.assert_called_once_with("Test query", test_config)
- def test_get_llm_model_answer_with_streaming(config, mocker):
- config.stream = True
- mocked_openai_chat = mocker.patch("embedchain.llm.openai.ChatOpenAI")
- llm = OpenAILlm(config)
- llm.get_llm_model_answer("Test query")
- mocked_openai_chat.assert_called_once()
- callbacks = [callback[1]["callbacks"] for callback in mocked_openai_chat.call_args_list]
- assert any(isinstance(callback[0], StreamingStdOutCallbackHandler) for callback in callbacks)
- def test_get_llm_model_answer_without_system_prompt(config, mocker):
- config.system_prompt = None
- mocked_openai_chat = mocker.patch("embedchain.llm.openai.ChatOpenAI")
- llm = OpenAILlm(config)
- llm.get_llm_model_answer("Test query")
- mocked_openai_chat.assert_called_once_with(
- model=config.model,
- temperature=config.temperature,
- max_tokens=config.max_tokens,
- model_kwargs={"top_p": config.top_p},
- api_key=os.environ["OPENAI_API_KEY"],
- base_url=os.environ["OPENAI_API_BASE"],
- http_client=None,
- http_async_client=None,
- )
- def test_get_llm_model_answer_with_special_headers(config, mocker):
- config.default_headers = {"test": "test"}
- mocked_openai_chat = mocker.patch("embedchain.llm.openai.ChatOpenAI")
- llm = OpenAILlm(config)
- llm.get_llm_model_answer("Test query")
- mocked_openai_chat.assert_called_once_with(
- model=config.model,
- temperature=config.temperature,
- max_tokens=config.max_tokens,
- model_kwargs={"top_p": config.top_p},
- api_key=os.environ["OPENAI_API_KEY"],
- base_url=os.environ["OPENAI_API_BASE"],
- default_headers={"test": "test"},
- http_client=None,
- http_async_client=None,
- )
- def test_get_llm_model_answer_with_model_kwargs(config, mocker):
- config.model_kwargs = {"response_format": {"type": "json_object"}}
- mocked_openai_chat = mocker.patch("embedchain.llm.openai.ChatOpenAI")
- llm = OpenAILlm(config)
- llm.get_llm_model_answer("Test query")
- mocked_openai_chat.assert_called_once_with(
- model=config.model,
- temperature=config.temperature,
- max_tokens=config.max_tokens,
- model_kwargs={"top_p": config.top_p, "response_format": {"type": "json_object"}},
- api_key=os.environ["OPENAI_API_KEY"],
- base_url=os.environ["OPENAI_API_BASE"],
- http_client=None,
- http_async_client=None,
- )
- @pytest.mark.parametrize(
- "mock_return, expected",
- [
- ([{"test": "test"}], '{"test": "test"}'),
- ([], "Input could not be mapped to the function!"),
- ],
- )
- def test_get_llm_model_answer_with_tools(config, mocker, mock_return, expected):
- mocked_openai_chat = mocker.patch("embedchain.llm.openai.ChatOpenAI")
- mocked_convert_to_openai_tool = mocker.patch("langchain_core.utils.function_calling.convert_to_openai_tool")
- mocked_json_output_tools_parser = mocker.patch("langchain.output_parsers.openai_tools.JsonOutputToolsParser")
- mocked_openai_chat.return_value.bind.return_value.pipe.return_value.invoke.return_value = mock_return
- llm = OpenAILlm(config, tools={"test": "test"})
- answer = llm.get_llm_model_answer("Test query")
- mocked_openai_chat.assert_called_once_with(
- model=config.model,
- temperature=config.temperature,
- max_tokens=config.max_tokens,
- model_kwargs={"top_p": config.top_p},
- api_key=os.environ["OPENAI_API_KEY"],
- base_url=os.environ["OPENAI_API_BASE"],
- http_client=None,
- http_async_client=None,
- )
- mocked_convert_to_openai_tool.assert_called_once_with({"test": "test"})
- mocked_json_output_tools_parser.assert_called_once()
- assert answer == expected
- def test_get_llm_model_answer_with_http_client_proxies(env_config, mocker):
- mocked_openai_chat = mocker.patch("embedchain.llm.openai.ChatOpenAI")
- mock_http_client = mocker.Mock(spec=httpx.Client)
- mock_http_client_instance = mocker.Mock(spec=httpx.Client)
- mock_http_client.return_value = mock_http_client_instance
- mocker.patch("httpx.Client", new=mock_http_client)
- config = BaseLlmConfig(
- temperature=0.7,
- max_tokens=50,
- top_p=0.8,
- stream=False,
- system_prompt="System prompt",
- model="gpt-3.5-turbo",
- http_client_proxies="http://testproxy.mem0.net:8000",
- )
- llm = OpenAILlm(config)
- llm.get_llm_model_answer("Test query")
- mocked_openai_chat.assert_called_once_with(
- model=config.model,
- temperature=config.temperature,
- max_tokens=config.max_tokens,
- model_kwargs={"top_p": config.top_p},
- api_key=os.environ["OPENAI_API_KEY"],
- base_url=os.environ["OPENAI_API_BASE"],
- http_client=mock_http_client_instance,
- http_async_client=None,
- )
- mock_http_client.assert_called_once_with(proxies="http://testproxy.mem0.net:8000")
- def test_get_llm_model_answer_with_http_async_client_proxies(env_config, mocker):
- mocked_openai_chat = mocker.patch("embedchain.llm.openai.ChatOpenAI")
- mock_http_async_client = mocker.Mock(spec=httpx.AsyncClient)
- mock_http_async_client_instance = mocker.Mock(spec=httpx.AsyncClient)
- mock_http_async_client.return_value = mock_http_async_client_instance
- mocker.patch("httpx.AsyncClient", new=mock_http_async_client)
- config = BaseLlmConfig(
- temperature=0.7,
- max_tokens=50,
- top_p=0.8,
- stream=False,
- system_prompt="System prompt",
- model="gpt-3.5-turbo",
- http_async_client_proxies={"http://": "http://testproxy.mem0.net:8000"},
- )
- llm = OpenAILlm(config)
- llm.get_llm_model_answer("Test query")
- mocked_openai_chat.assert_called_once_with(
- model=config.model,
- temperature=config.temperature,
- max_tokens=config.max_tokens,
- model_kwargs={"top_p": config.top_p},
- api_key=os.environ["OPENAI_API_KEY"],
- base_url=os.environ["OPENAI_API_BASE"],
- http_client=None,
- http_async_client=mock_http_async_client_instance,
- )
- mock_http_async_client.assert_called_once_with(proxies={"http://": "http://testproxy.mem0.net:8000"})
|